IIIIIII

1.1, Benefits Of TeNSOIRT . ..uit ittt ettt ieiteteeeeeaaeetaneeeeaneeranneeeeneeessneeeonnsesannens 2
1.2. Where Does TensorRT FitZ. . ..connriiiiiiiiiii i e ettt e e et e e eneeeanaes 3
1.3. HOW D0oes TENSOTRT WOTK?. . ..cnnutiiittieittiiiteeetteeeterenneeeaneerenneerenneeesneesenneeranes 6
To4. APL OVEIVIBW. ettt ettt ettt ettt ettt et et e eeaeesenaeesennesaannens 7
(P T (o) VAN 0 To T I €< A = 0 1o £ [S 8
Chapter 2. TenSOrRT TasKS....cieeeiiieeteiieieieneeeraeeeesneeeseneeeenscessnsscsnnseesnssesnnsscsnnssannsans 9
2.1, Initializing TensOrRT TN Gt ittt ettt eiite et eeeiiaeeeeeeanannaaeseaennnnes 9
2.2. Creating A Network Definition In CH+. i eer e eee e enaeeaaas 10
2.2.1. Importing A Model Using A Parser In G4+, iiiiiiiiiiiiiiiiiiii it ieniiieeeeaaannnes 10
2.2.2. Importing A Caffe Model Using The C++ Parser APL.......cccoviiiiiiiiiiiiiiiiiiiennnnen. 11
2.2.3. Importing A TensorFlow Model Using The C++ UFF Parser APlL.........cccevviiiinnnnnnnnn. 11
2.2.4. Importing An ONNX Model Using The C++ Parser APL...........coovviiiiiiiiiiiiiinininnn... 12
2.3. Creating A Network Using The C++ APliiiiiiiiiiiiiiiiiiiiieieeiiieeeereeannnneeeaannns 12
2.4. Building An ENGIiNe IN CH.uieuiieii ittt ettt et iaetaeeeneeeaenns 13
2.5. Serializing A Model IN .. iiiiiii ittt ee et eeeenraeeeeesennnneeessesnnnsnesssennnnes 14
2.6. Performing INference I Gt it e ettt et e i eeeeieeeeeanannaas 14
2.7. Memory Management [N Gt oo iiiiiiiiiiiiteiiiiteteeeerneeesreennnnnessessnnnneessesnnnns 15
2.8. Initializing TensorRT in Python....cooiiiiiiiiiiiiii i it e ee i e e as 16
2.9. Creating A Network Definition In Python.........ccoiiiiiiiiiiiiiiii e 16
2.9.1. Importing A Model Using A Parser In Python........cccoiiiiiiiiiiiiiiiiiiiiiiiiiiii it 16
2.9.2. Importing From Caffe Using Python.........ccoiiiiiiiiiiiiiiiiiiiii e 17
2.9.3. Importing From TensorFlow Using Python........c.ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeens 17
2.9.4. Importing From ONNX Using Python.........coiiiiiiiiiiiiiiiiiiiiiiiiii e 18
2.9.5. Importing From PyTorch And Other Frameworks.......coevvuiiiiiiiiiiiiiiiiiiieeenennnnes 19
2.10. Creating A Network Using The Python APL.........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiici e, 19
2.11. Building An Engine In Python.......ueiiiiiiiiiiii ittt eerr e e eneeeeeaannas 20
2.12. Serializing A Model In PYthon.viiiiiiiiii i i et et e e eaaes 21
2.13. Performing Inference In Python.......cooiiiiiiiiiiiiiii it eiiiieereeeineeeeaaannnes 22
2.14. Extending TensorRT With CUStOm Layers....cccuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeniineeeeeanns 22
2.14.1. Adding Custom Layers Using The C++ APlciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiereeennneees 23
2.14.2. Using Custom Layers When Importing A Model From A Framework....................... 24
2.15. Working With MiXed PreCision......c..ieiiiiiiiiiiiiiiii e i eieeeie e neeaanaees 25
2.15.1. Enabling FP16 Inference USiNg C+......uiiiiiiiiiiiiiiiiiiiiteeeeeeiieeeeeesninneeeeeennns 25
2.15.2. Enabling FP16 Inference Using Python.......cccceiiiiiiiiiiiiiiiiiiiiiiieiiiiieiieeenneenns 25
2.15.3. Optimizing INT8 Calibration Using C++ APl ...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeenns 26
2.15.4. Optimizing INT8 Calibration Using Python..........cccociiiiiiiiiiiiiiiiiiiiiiiiiiiii e, 27
2.16. Deploying A TensorRT Optimized Model......cvviueiiiiiiiiiiiiiiiiiiiiiiieeiiiieeeeeeenaeees 27
2.16.1. Deploying In The Cloud......c.viiuiiiniiiiiiiiiii ittt neeeeeas 27
2.16.2. Deploying To An Embedded System.....c.c.uuiiiiiiiiiiiiiiiiiiiiiiireiiiieeeeeennnneaeenes 28
www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | ii

Chapter 3. Working With Deep Learning Frameworks........c.ccceeiieiiiieiiiinieiieeicsrncecnnnsenns 30

3.1, SUPPOrtEd OPeratioNS. ...uut ittt iiit ittt et e it eeeieeeeeeeeanaeeeanaeeaaaeeanneeeennnnn 30
3.2. Working With TensorFlOW.ueiiiiiiiiiii it i ittt e e e eiieee e eeeennaeaeeanns 31
3.2.1. Freezing A TensorFLOW Graph......cceiiieiiiiiiiiiiiiiii i eii e eieeaeneeeannees 32
3.2.2. Freezing A Keras MOl ..co.uuuriiiiiiiiiiiii ittt ei ittt eeeiieeeeeeennnaaeeeenennnnes 32
3.2.3. Converting A Frozen Graph TO UFF.....cciuiiiiiiiiiiiiii i ieiieeieeeeneeeeaneaeanns 32
3.2.4. Working With TensorFlow RNN Weights......coviiieiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeaaannnns 32
3.2.4.1. TensorFlow RNN Cells Supported In TenSOrRT.......cceviieiiieiiiieiiiiiniiiniieennen. 33
3.2.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT.................. 33
3.2.4.3. WOTKILOW. c ettt ettt et e ettt e et e renaeeeeneeeenneerannaesannesannes 34
3.2.4.4. Dumping The TensorFlow Weights.....ccveiiiiiiiiiiiiiiiiiiiii i ceeeireeeens 34
3.2.4.5. Loading Dumped Weights.oiviiiiiiiiiiiiiiii it ee i enenaaaas 34
3.2.4.6. Converting The Weights To A TensorRT Format.......ccevviiiiiiiiiiiiiiineireennnnns 34
3.2.4.7. BasiCLSTMCEll EXaMPLe. . .uuiitiiiiiii ittt et ittt eeiiiteeeeeeaiaeeeeeaannnes 35
3.2.4.8. Setting The Converted Weights And Biases.......coeveiiiiiiiiiiiiiiiiiiiieninneeannns 37
3.3. Working With PyTorch And Other Frameworks.o.eeeiiiiiiiieiiiiiiiiiiieiiiieeeeeaennnes 38
3.4. Working With The TensorRT Lite ENgiNe.....cccutiiiieiiiiiiiiiiiiiiiieiiteieieeeaieeeanneeeanns 38
3.4.1. RUNNING INf@IENCE. . ittt ittt e ettt eeeiineeeeeeaannaeeseessnnnneseesnnns 39
3.4.2. Preprocessing And Postprocessing Function Tables.......ccoveeeiiiiiiiiiiiiiieiineennnnenn. 40
Chapter 4. SaAMPIES. i ciiiietiiiiiineetieieanneeteeesennestecesennasssecsssnnsssecsssnnsssscasssnnsssecasnns 42
g T T 0 U T 43
4.2, SAMPLEMNISTAPL. ..ttt i it te ittt et eeeraeeeeeaennneeeesessnnnnesssesnnnneessessnnnnes 45
4.3, SAMPLEUTTMNIST .. .ottt ittt et e ettt reeeeeaneerenneeeaneesenneesenneesennesenneesanns 45
4.4, SaMPlEONNXMNIST ..ttt ieiiii it tteeiieteereernneteeressnnnnesseesnnnneesssssnnnaessessnnnnes 46
4.4.1. Configuring The ONNX Parser......ueeeiiiiiiitetiieiiieeeeieiaieeeeteeeiaeeeeeessnseseeeanns 47
4.4.2. Converting The ONNX Model To A TensorRT NetWOrk.....c.veeeieiiiiiiiiiiieniieeeennnenn. 47
4.4.3. Building The Engine And Running INference.......c.ccoviiiiiiiiiiiiiiiiiiiiiiiiiiieieianes 47
4.5, SAMPlEGOOGIENEL. ...\ttt ittt e ettt eeereeeaaneeeanaeeeanaaeaanaeeannens 48
4.5.1. Configuring The BUilder.......cuiiiiiiiiiiiiiiiiiiii ittt e eiie e eeeeireeeeeaannaaeens 48
4.5.2. Profiling. ...t ettt ae e 49
4.6, SAMPLEChArRNN. .. ittt it ettt eeeieeeeeeeenaaeeeesesnnnseeeesssnnneeeesssnnnnnes 49
4.6.1. Network Configuration......o.ueeeeeeiiiiiiiiiiiii ittt e et eeneeeeeeeaans 50
4.6.1.1. RNNVZ Layer SOtUP . iiiiiittiiiiiiiiteeiiieteereerineteeeaennnneeeesessnnnnesssennnnes 50
4.6.1.2. RNNv2 Layer - Optional INPULS...co.ueerittiiieiiieeieeeieeeeieeeeeneeeaaneeeannees 50
4.6.1.3. MatrixMultiply Layer SetUP..cccueetiiiiiiiii it ieeeeiieeeeeeennnneeeeeannnneaeens 51
4.6.1.4. ElementWise Layer SETUP....ciiiiiiiiii ittt ittt it eeeaiaeeeeenannnaas 51
4.6.1.5. TOPK Layer SeTUP. . et iiiiiititiiiiiiieeeiieeeeeeeraeeeeeaennneeessessnnneesssennnnes 51
4.6.1.6. Marking The Network OULPUES.cuuiiiiiiiiiii it eiiiie e eeeiieeeeeaaannas 52
4.6.2. RNNv2 Workflow - From TensorFlow To TensorRT........ccovvviiiiiiiiiiiiiiiiiiinennnennns, 52
4.6.2.1. Training A CharRNN Model With TensorFlow......cccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiaees 52
4.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint........c.cccvvviiiiiiinnnnnn. 52
4.6.2.3. Loading And Converting Weights FOrmat.......ccovieiiiiiiiiiiiiiiiiiiiiieeienennnneens 52
4.6.2.4. RNNv2: Setting Weights And Bias........ccevveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennes 53
www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | iii

4.6.3. Seeding The NETWOIK.uiiiiiiiiiiii it it ettt eeiiiee e eeeesnaaaeeaaanns 54

4.6.4. GeNErating Data.....cciiiiiiiniiiiriiiiiterieiiieteereennaneeeeressnnneessessnnnnesssesnnnneesees 54
Y- 101] o1 U] | I I T P PP PP 55
4.7.1. Defining The NetWOrK......oiiiiiiii i e e e e e e e eaaaees 55
4.7.2. BUIldiNg The ENgine....cciiiiiiiiiitiiiiiiitttieiiiieteeeeeairaeeeeeessnaseseessnnnssseesennnes 56
4.7.2.1. Calibrating The NetWOrK.ccueiiiitiiiiiii i et et ereieeeaneeeenneeaaneens 56
4.7.2.2. Calibration Set.....ccuuiiiiiiiii ittt r e et 56
4.7.3. Configuring The BUilder.......couiiiniiiiiiiiiiiiii e 57
4.7.4. RUNNING The ENGiNe....uuuetiiiiiiiiitiiiiiiitetteeiieeeeeeenrnaeeeesesrnneeessessnnnseessonnns 57
4.7.5. Verifying The OULPUL. .. .uiiiitiieieii e e et eeeteeerateeeeeeeaneeeennneeanneeenneeens 57
4.7.6. Batch Files For Calibration........oeeeiiiiiiiiiiiiiiiiiiiiiiii i e e 57
4.7.6.1. Generating Batch Files For Caffe Users.....ccoieiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeanns 57
4.7.6.2. Generating Batch Files For Non-Caffe Users......c.ccvveiiiieiiiiiiiiiieireeninneeennenns 59
o Y1001 o] U] o U= [FO O PP PP 59
4.8.1. Defining The NetWOrK.oiiiiiiii i e e e e e e e eanaees 60
4.8.2. Enabling Custom Layers In NvCaffeParser......ccciviiiiiiiiiiiiiiiiiiiiiiiiieeeiinneeeenns 60
4.8.3. BUIlding The ENGiNe....ciiuiiiiittiiiiiiiteiteereeteteerenneeeaeerenneeeanneeesneesannes 61
4.8.4. Serializing ANd Deserializing......covieiiiiiiiiiiettiieiiiieteerereineeeeeeesnnseeeeresannnneees 61
4.8.5. Resource Management And EXECULION.ceiitiiiiiiiiiiiiiiiiiiiiiiiiitiieiieaaaennaens 62
o Y- 1011 o1 U=] ¥ 1 PPN 63
T R 0 < = N 64
4.9.2. Preparing The Data...ccceeeeeiiieiiiietetieriieeeeereninneeeeeessnneneesessnnnnessssssnnnsessanns 65
4.9.3. RUNNING The SamIPle.ttt e et ee et eeanteeenneeeaneeeannnannns 66
4.9.4, Training The MOdel.......oiiiiiiiiiiiiiiiiii ittt rei ittt reeenaeeeeeeannnneesssannnns 67
4.9.5. Importing Weights From A ChecKpoint........cccviiiiiiiiiiiiiiiiiiiiii i ieeeiieeeeans 67
4.10. samPLleFasterRONN.t i e e e e et ettt eeieeeaeneeeanneeaaraeeanneenns 68
T 0 g O 10 Y 68
4.10.2. Preprocessing The INPUL.....ocueiiiiiiii i e i e e et eeraeeeeneeeannees 69
4.10.3. Defining The NeTWOIK. ...uuiiiiiiiiii it ittt ettt eeeenaeeseaeannnaseseanns 70
4.10.4. BUilding The ENgine.....uuiiiiiiiiiiiiiieii et eeeieeeeieeeeiaeeaaneeeanneeesnaeeeannens 70
4.10.5. RUNNING The ENGINe...ciiiiiiiitiiiiiiiiitteteiiieeeereeerneeeeeeesnnneeeessssnneseesssnnnnnes 70
4.10.6. Verifying The OULPUL. ...ttt et e e et e e e eeaees 71
o B Y- 1o 411 (=10 3 0 PP 71
T O IO 0= = P 72
4.11.2. Processing The INPUt Graph.......cceiiiiiiitiiiiiiiiiiiiieiiiieeeeenineeeeressnnneeseenns 73
4.11.3. Preparing The Data......cciiiiiiiiiiiiiiiiiiiiiiiiiiiit e it eeeiiaeeeeteeaineaeeeannnns 73
4.11.4. Defining The Network And PlUGiNS.ccveieiiiiiiiiiiiiieiiiiietieeenineeeeeeennnneeeens 74
4.11.5. Verifying The OULPUL. ..ciiiiiiii i it et e eiiee e eeeeiaeaeeeaanns 75
4,12, SAMPLEMOVIELENS. ..ttt e ettt e et te et e et e eeaatetanaeeaanaeeanneeranaaeanns 75
4.12.1. Importing Network To TeNSOIRTuuuiiiiiiiiiiiiiiiiiieeeeeiiieeeeeeeanneneeeasannnes 76
4.12.2. RUNNING WIth MPS. .. . i ettt ittt e e e e e eeeeanens 76
4.12.3. Verifying The OULPUL. ..uuiiiiiiiiiiiiiiii it ettt eeetineeeeesennnneneesaannns 76
o B T U =) 1111 o] (= F 77
www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | iv

o S 0)V o] of L o T o o (P PPt 77

O S T (=3 0 1= A L WL <] 4 ol 78
o LY 11401 =T o] 0 SO PPt 78
3 A 0 o T o P PP 78

Chapter 5. TroubleshOOting. . ..cciereeiiiiiiiieeiieiereneeteeeeeenneeeeeresnnneeeccessnnsseccssssnnsssccannns 80
T I 71N 80
T T] o o PPN 81

ApPendiX A. APPeNdiX..iiieiiiiiiiiiiieiiiieieienttieeteienetesencesanstesenstesnsssaanssesnseannaann 82
R I 1= 1o o S I)= T PP 82
A2, ComMMANA LiNE WEaPPEl . e enuttteitteettteeteeeeeeeenaeeeaneeeeaneeeenneeesnsesesnsessnneeesnneens 84
A.3. ACKNOWLEDGEMENTS. ... uutiitiintteteenteentrenetaneraaeeaaesnnesnneenesenneenneenssonsssnssonnenns 85
www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | v

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | vi

Chapter 1.
WHAT IS TENSORRT?

The core of TensorRT " is a C++ library that facilitates high performance inference on
NVIDIA graphics processing units (GPUs). It is designed to work in a complementary
fashion with training frameworks such as TensorFlow, Caffe, PyTorch, MXNet, etc. It
focuses specifically on running an already trained network quickly and efficiently on a
GPU for the purpose of generating a result (a process that is referred to in various places
as scoring, detecting, regression, or inference).

Some training frameworks such as TensorFlow have integrated TensorRT so that it can
be used to accelerate inference within the framework. Alternatively, TensorRT can be
used as a library within a user application. It includes parsers for importing existing
models from Caffe, ONNX, or TensorFlow, and C++ and Python APIs for building
models programmatically.

ﬁ..

Trained TensorRT TensorRT
Neural Obtimi Runtime
ptimizer

Figure 1 TensorRT is a high performance neural network inference
optimizer and runtime engine for production deployment.

TensorRT optimizes the network by combining layers and optimizing kernel selection
for improved latency, throughput, power efficiency and memory consumption. If the
application specifies, it will additionally optimize the network to run in lower precision,
further increasing performance and reducing memory requirements.

The TensorRT API includes implementations for the most common deep learning layers.
For more information about the layers, see TensorRT Layers. You can also use the Plugin

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 1

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html

What Is TensorRT?

API to provide implementations for infrequently used or more innovative layers that are
not supported out-of-the-box by TensorRT.

1.1. Benefits Of TensorRT

After the neural network is trained, TensorRT enables the network to be compressed,
optimized and deployed as a runtime without the overhead of a framework.

TensorRT combines layers, optimizes kernel selection, and also performs normalization
and conversion to optimized matrix math depending on the specified precision (FP32,
FP16 or INTS) for improved latency, throughput, and efficiency.

For deep learning inference, there are 5 critical factors that are used to measure software:

Throughput
The volume of output within a given period. Often measured in inferences/second
or samples/second, per-server throughput is critical to cost-effective scaling in data
centers.

Efficiency
Amount of throughput delivered per unit-power, often expressed as performance/
watt. Efficiency is another key factor to cost effective data center scaling, since servers,
server racks and entire data centers must operate within fixed power budgets.

Latency
Time to execute an inference, usually measured in milliseconds. Low latency is
critical to delivering rapidly growing, real-time inference-based services.

Accuracy
A trained neural network’s ability to deliver the correct answer. For image
classification based usages, the critical metric is expressed as a top-5 or top-1
percentage.

Memory usage
The host and device memory that need to be reserved to do inference on a network
depends on the algorithms used. This constrains what networks and what
combinations of networks can run on a given inference platform. This is particularly
important for systems where multiple networks are needed and memory resources
are limited - such as cascading multi-class detection networks used in intelligent
video analytics and multi-camera, multi-network autonomous driving systems.

Alternatives to using TensorRT include:

» Using the training framework itself to perform inference.
» Writing a custom application that is designed specifically to execute the network
using low level libraries and math operations.

Using the training framework to perform inference is easy, but tends to result in much
lower performance on a given GPU than would be possible with an optimized solution
like TensorRT. Training frameworks tend to implement more general purpose code
which stress generality and when they are optimized the optimizations tend to focus on
efficient training.

Higher efficiency can be obtained by writing a custom application just to execute
a neural network, however it can be quite labor intensive and require quite a bit

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 2

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin.html

What Is TensorRT?

of specialized knowledge to reach a high level of performance on a modern GPU.
Furthermore, optimizations that work on one GPU may not translate fully to other GPUs
in the same family and each generation of GPU may introduce new capabilities that can
only be leveraged by writing new code.

TensorRT solves these problems by combining an API with a high level of abstraction
from the specific hardware details and an implementation which is developed and
optimized specifically for high throughput, low latency, and low device memory
footprint inference.

1.2. Where Does TensorRT Fit?

Generally the workflow for developing and deploying a deep learning model goes
through three phases.

» Phase 1 is training
» Phase 2 is developing a deployment solution, and
» Phase 3 is the deployment of that solution

Phase 1: Training

During the training phase, the data scientists and developers will start with a statement
of the problem they want to solve and decide on the precise inputs, outputs and loss
function they will use. They will also collect, curate, augment, and probably label the
training, test and validation data sets. Then they will design the structure of the network
and train the model. During training, they will monitor the learning process which may
provide feedback which will cause them to revise the loss function, acquire or augment
the training data. At the end of this process, they will validate the model performance

and save the trained model. Training and validation is usually done using DGX-1 ,
Titan, or Tesla datacenter GPUs.

TensorRT is generally not used during any part of the training phase.

Phase 2: Developing A Deployment Solution

During the second phase, the data scientists and developers will start with the trained
model and create and validate a deployment solution using this trained model. Breaking
this phase down into steps, you get:

1. Think about how the neural network functions within the larger system of which it
is a part of and design and implement an appropriate solution. The range of systems
that might incorporate neural networks are tremendously diverse. Examples
include:

» the autonomous driving system in a vehicle
» avideo security system on a public venue or corporate campus
» the speech interface to a consumer device

» anindustrial production line automated quality assurance system

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 3

What Is TensorRT?

» an online retail system providing product recommendations, or
» aconsumer web service offering entertaining filters users can apply to uploaded
images.

Determine what your priorities are. Given the diversity of different systems that
you could implement, there are a lot of things that may need to be considered for
designing and implementing the deployment architecture.

» Do you have a single network or many networks?

» What device or compute element will you use to run the network?

» How is data going to get to the models?

» What pre-processing will be done?

» What latency and throughput requirements will you have?

» Will you be able to batch together multiple requests?

» Will you need multiple instances of a single network to achieve the required
overall system throughput and latency?

» What will you do with the output of the network?

» What post processing steps are needed?

TensorRT provides a fast, modular, compact, robust, reliable inference engine that
can support the inference needs within the deployment architecture.

2. After the data scientists and developers define the architecture of their inference
solution, by which they determine what their priorities are, they then build an
inference engine from the saved network using TensorRT. There are a number
of ways to do this depending on the training framework used and the network
architecture. Generally, this means you need to take the saved neural network and
parse it from its saved format into TensorRT using the ONNX parser (see Figure 2),
Caffe parser, or TensorFlow/UFF parser.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 4

What Is TensorRT?

ONNX Workflow V1

ONNX & Model

Import

-

J'g CNTK n:'nl:::p' |

BYTHRCH .xnet

Framework ToneerRT Runtime
Integration
-
2 '8
'r ‘Mm_au | . .
TensorFlow Ny .
» a8
L}

Network

Definition API

Custom
Framework

Figure 2 ONNX Workflow V1

3. After the network is being parsed, you'll need to consider optimization options
-- batch size, workspace size and mixed precision. These options are chosen and
specified as part of the TensorRT build step where you actually build an optimized
inference engine based on your network. Subsequent sections of this guide provide
detailed instructions and numerous examples on this part of the workflow, parsing
your model into TensorRT and choosing the optimization parameters (see Figure 3).

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 5

What Is TensorRT?

Layer & Tensor Fusion

Precision Calibration iz Kernel Auto-Tuning

e~ |

"': P ———— ...-“-— .

N] gy,

. o
Trained Neural oo Optimized

Network Inference

Dynamic Tensor Multi-Stream Engine
Memory Execution

Figure 3 TensorRT optimizes trained neural network models to
produce a deployment-ready runtime inference engine.

4. After you've created an inference engine using TensorRT, you'll want to validate
that it reproduces the results of the model as measured during the training process.
If you have chosen FP32 or FP16 it should match the results quite closely. If you
have chosen INTS there may be a small gap between the accuracy achieved during
training and the inference accuracy.

5. Write out the inference engine in a serialized format. This is also called a plan file.

Phase 3: Deploying A Solution

The TensorRT library will be linked into the deployment application which will call
into the library when it wants an inference result. To initialize the inference engine, the
application will first deserialize the model from the plan file into an inference engine.

TensorRT is usually used asynchronously, therefore, when the input data arrives,
the program calls an enqueue function with the input buffer and the buffer in which
TensorRT should put the result.

1.3. How Does TensorRT Work?

To optimize your model for inference, TensorRT takes your network definition,

performs optimizations including platform specific optimizations, and generates the
inference engine. This process is referred to as the build phase. The build phase can take
considerable time, especially when running on embedded platforms. Therefore, a typical
application will build an engine once, and then serialize it for later use.

The generated plan file must be retargeted to the specific GPU in case you want to
run it on a different GPU.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 6

What Is TensorRT?

The build phase performs the following optimizations on the layer graph:

» Elimination of layers whose outputs are not used

» Fusion of convolution, bias and ReLU operations

» Aggregation of operations with sufficiently similar parameters and the same source
tensor (for example, the 1x1 convolutions in GoogleNet v5’s inception module)

» Merging of concatenation layers by directing layer outputs to the correct eventual
destination.

The builder also modifies the precision of weights if necessary. When generating
networks in 8-bit integer precision, it uses a process called calibration to determine the
dynamic range of intermediate activations, and hence the appropriate scaling factors for
quantization.

In addition, the build phase also runs layers on dummy data to select the fastest from its
kernel catalog, and performs weight pre-formatting and memory optimization where
appropriate.

For more information, see Working With Mixed Precision.

1.4. APl Overview

The TensorRT API enables developers to import, calibrate, generate, and deploy
optimized networks. Networks can be imported directly from Caffe, or from other
frameworks via the UFF or ONNX formats. They may also be created programmatically
by instantiating individual layers and setting parameters and weights directly.

TensorRT provides a C++ implementation on all supported platforms, and a Python
implementation on x86.

The key interfaces in the TensorRT core library are:

Network Definition
The Network Definition interface provides methods for the application to specify
the definition of a network. Input and output tensors can be specified, layers can
be added, and there is an interface for configuring each supported layer type. As
well as layer types, such as convolutional and recurrent layers, and a Plugin layer
type allows the application to implement functionality not natively supported
by TensorRT. For more information about the Network Definition, see Network
Definition APL

Builder
The Builder interface allows creation of an optimized engine from a network
definition. It allows the application to specify the maximum batch and workspace
size, the minimum acceptable level of precision, timing iteration counts for
autotuning, and an interface for quantizing networks to run in 8-bit precision. For
more information about the Builder, see Builder API.

Engine
The Engine interface provides allow the application to executing inference. It
supports synchronous and asynchronous execution, profiling, and enumeration and
querying of the bindings for the engine inputs and outputs. A single engine can have
multiple execution contexts, allowing a single set of set of trained parameters to be

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 7

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_builder.html

What Is TensorRT?

used for the simultaneous execution of multiple batches. For more information about
the Engine, see Execution API.

TensorRT provides parsers for importing trained networks to create network definitions:

Caffe Parser
This parser can be used to parse a Caffe network created in BVLC Caffe or NVCaffe
0.16. It also provides the ability to register a plugin factory for custom layers. For
more details on the Caffe Parser, see NvCaffeParser.

Uff Parser
This parser can be used to parse a network in UFF format. It also provides the ability
to register a plugin factory and pass field attributes for custom layers. For more
details on the API, see NvUffParser.

ONNX Parser
This parser can be used to parse an ONNX model. For more details on the AP, see
NvONNXParser.

The Python API implementation includes a highly abstracted interface called TensorRT
Lite. TensorRT Lite handles almost everything when it comes to building an engine
and executing inference, therefore, users are able to quickly create an engine and start
processing data. You can find TensorRT Lite in the tensorrt. lite directory. For more
information see TensorRT Lite.

1.5. How Do | Get TensorRT?

For step-by-step instructions on how to install TensorRT, see the TensorRT Installation
Guide.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 8

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvcaffeparser1_1_1_i_caffe_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvuffparser_1_1_i_uff_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvonnxparser_1_1_i_o_n_n_x_parser.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/index.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/topics/python_api/pkg_ref/lite.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html

Chapter 2.
TENSORRT TASKS

The following sections highlight the user goals and tasks that you can perform with
TensorRT. Further details are provided in the Samples section and are linked to below
where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

» Creating a TensorRT network definition from your model

» Invoking the TensorRT builder to create an optimized runtime engine from the
network

» Serializing and deserializing the engine so that it can be rapidly recreated at runtime

» Feeding the engine with data to perform inference

Some further topics may be important depending on your use case:

» Augmenting TensorRT built-in functionality with custom layers
» Using mixed precision with TensorRT

2.1. Initializing TensorRT in C++

There are two ways to initialize the TensorRT library:

» Create an IBuilder object to optimize a network.
» Create an IRuntime object to execute an optimized network.

In either case, you must implement a logging interface through which TensorRT
reports errors, warnings, and informational messages. The following code shows how
to implement the logging interface. In this case, we have suppressed informational
messages, and report only warnings and errors.

class Logger : public ILogger
{
void log(Severity severity, const char* msg) override
{
// suppress info-level messages
if (severity != Severity::kINFO)

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 9

TensorRT Tasks

std: :cout << msg << std::endl;
}
} glogger;
It is possible to create multiple runtime and builder objects; however the logger is a
singleton, so you should use the same object for each.

The builder or runtime will be created with the GPU context associated with the creating
thread. Although a default context will be created if it does not already exist, it is
advisable to create and configure the CUDA context before creating a runtime or builder
object.

2.2. Creating A Network Definition In C++

The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, which supports serialized models in the following formats:

» Caffe (both BVLC and)
» ONNX, and
» UFF (used for TensorFlow)

An alternative is to define the model directly using the TensorRT API. This requires you
to make a small number of API calls to define each layer in the network graph, and to
implement your own import mechanism for the model’s trained parameters.

In either case, you will explicitly need to tell TensorRT which tensors are required as
outputs of inference. Tensors which are not marked as outputs are considered to be
transient values that may be optimized away by the builder. There is no restriction on
the number of output tensors, however, marking a tensor as an output may prohibit
some optimizations on that tensor. Inputs and output tensors must also be given names
(using ITensor: : setName ()). At inference time, you will supply the engine with an
array of pointers to input and output buffers. In order to determine in which order the
engine expects these pointers, you can query using the tensor names.

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. If a network
was created via a parser, the parser will own the memory occupied by the weights, and
so the parser object should not be deleted until after the builder has run.

2.2.1. Importing A Model Using A Parser In C++

To import a model using the C++ Parser API, you will need to perform the following
high-level steps:

1. Create the TensorRT builder and network.
2. Create the TensorRT parser for the specific format.
3. Use the parser to parse the imported model and populate the network.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 10

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

TensorRT Tasks

2.2.2. Importing A Caffe Model Using The C++ Parser API

The following steps illustrate how to import a Caffe model using the C++ Parser API. For
more information, see sampleMNIST.

1.

Create the builder and network:

IBuilder* builder = createInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

Create the Caffe parser:

ICaffeParser* parser = createCaffeParser() ;

Parse the imported model:

const IBlobNameToTensor* blobNameToTensor = parser->parse ("deploy file" ,
"modelFile", *network, DataType: :kFLOAT) ;

This populates the TensorRT network from the Caffe model. The final argument
instructs the parser to generate a network whose weights are 32-bit floats. Using
DataType: : kHALF would generate a model with 16-bit weights instead.

In addition to populating the network definition, the parser returns a dictionary that
maps from Caffe blob names to TensorRT tensors. Unlike Caffe, a TensorRT network
definition has no notion of in-place operation. When an Caffe model uses an in-place
operation, the TensorRT tensor returned in the dictionary corresponds to the last
write to that blob. For example, if a convolution writes to a blob and is followed by
an in-place ReLU, that blob’s name will map to the TensorRT tensor which is the
output of the ReLU.

Specify the outputs of the network:

for (auto& s : outputs)
network->markOutput (*blobNameToTensor->find(s.c_str()));

2.2.3. Importing A TensorFlow Model Using The C++ UFF
Parser API

Importing from the TensorFlow framework requires you to convert the TensorFlow
model into intermediate format UFF (Universal Framework Format). For more
information about the conversion, see Converting A Frozen Graph To UFF.

The following steps illustrate how to import a TensorFlow model using the C++ Parser
API. For more information about the UFF import, see sampleUffMNIST.

1.

Create the builder and network:

IBuilder* builder = createInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

Create the UFF parser:

IUFFParser* parser = createUffParser();

Declare the network inputs and outputs to the UFF parser:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 11

TensorRT Tasks

parser->registerInput ("Input 0", DimsCHW(1l, 28, 28), UffInputOrder: :kNCHW)
parser->registerOutput ("Binary 3");

TensorRT expects the input tensor be in CHW order. When importing from
TensorFlow, ensure that the input tensor is in the required order, and if not,
convert it to CHW.

Parse the imported model to populate the network:

parser->parse (uffFile, *network, nvinferl::DataType: :kFLOAT) ;

2.2.4. Importing An ONNX Model Using The C++ Parser
API

The following steps illustrate how to import an ONNX model using the C++ Parser APL
For more information about the ONNX import, see sampleOnnxMNIST.

1.

Create the ONNX parser. The parser uses an auxiliary configuration management
SampleConfig object to pass the input arguments from the sample executable to the
parser object:

nvonnxparser: : IOnnxConfig* config = nvonnxparser::createONNXConfig() ;

//Create Parser
nvonnxparser: : IONNXParser* parser = nvonnxparser: :createONNXParser (*config) ;

Ingest the model:

parser->parse (onnx_filename, DataType: :kFLOAT) ;
Convert the model to a TensorRT network:

parser->convertToTRTNetwork () ;

Obtain the network from the model:

nvinferl: :INetworkDefinition* trtNetwork = parser->getTRTNetwork() ;

2.3. Creating A Network Using The C++ API

Instead of using a parser, you can also define the network directly to TensorRT via the
network definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

In the following example, we will create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers. For more information, see
sampleMNISTAPL

1.

Create the builder and the network:

IBuilder* builder = createlInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 12

TensorRT Tasks

2. Add the Input layer to the network, with the input dimensions. A network can have

multiple inputs, although in this sample there is only one:

auto data = network->addInput (INPUT BLOB_NAME, dt, Dims3{1l, INPUT H,
INPUT W});

3. Add the Convolution layer with hidden layer input nodes, strides and weights for
filter and bias. In order to retrieve the tensor reference from the layer, we can use:

layerName->getOutput (0)

auto convl = network->addConvolution (*data->getOutput(0), 20, DimsHW{5, 5},

weightMap["convlfilter"], weightMap|["convlbias"]) ;
convl->setStride (DimsHW{1l, 1});

Weights passed to TensorRT layers are in host memory.

4. Add the Pooling layer:

auto pooll = network->addPooling (*convl->getOutput(0), PoolingType: :kMAX,
DimsHW{2, 2});
pooll->setStride (DimsHW{2, 2});

5. Add the FullyConnected and Activation layers:
auto ipl = network->addFullyConnected (*pooll->getOutput(0), 500,
weightMap["iplfilter"], weightMap["iplbias"])

auto relul = network->addActivation (*ipl->getOutput (0),
ActivationType: : kRELU) ;

6. Add the SoftMax layer to calculate the final probabilities and set it as the output:

auto prob = network->addSoftMax (*relul->getOutput(0)) ;
prob->getOutput (0) ->setName (OUTPUT_BLOB_NAME) ;

7. Mark the output:

network->markOutput (*prob->getOutput (0)) ;

2.4. Building An Engine In C++

The next step is to invoke the TensorRT builder to create an optimized runtime. One
of the functions of the builder is to search through its catalog of CUDA kernels for the

fastest implementation available, and thus it is necessary use the same GPU for building

as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as the
precision at which the network should run, and autotuning parameters such as how

many times TensorRT should time each kernel when ascertaining which is fastest (more

iterations leads to longer runtimes, but less susceptibility to noise.) You can also query
the builder to find out what reduced precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | 13

TensorRT Tasks

» The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

» Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

1. Build the engine using the builder object:

builder->setMaxBatchSize (maxBatchSize) ;
builder->setMaxWorkspaceSize (1 << 20) ;
ICudaEngine* engine = builder->buildCudaEngine (*network) ;
When the engine is built, TensorRT makes copies of the weights.

2. Dispense with the network, builder, and parser if using one.

2.5. Serializing A Model In C++

Building can take some time, so once the engine is built, you will typically want to
serialize it for later use. It is not absolutely necessary to serialize and deserialize a model
before using it for inference — if desirable, the engine object can be used for inference
directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

1. Run the builder as a prior offline step and then serialize:

IHostMemory *serializedModel = engine->serialize();
// store model to disk

// <.>
serializedModel->destroy () ;

2. Create a runtime object to deserialize:
IRuntime* runtime = createInferRuntime (gLogger) ;
ICudaEngine* engine = runtime->deserializeCudaEngine (modelData, modelSize,

nullptr) ;

The final argument is a plugin layer factory for applications using custom layers. For
more information, see Extending TensorRT With Custom Layers.

2.6. Performing Inference In C++

Once you have an engine, you can perform inference.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 14

TensorRT Tasks

1. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

IExecutionContext *context = engine->createExecutionContext() ;

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

2. Use the input and output blob names to get the corresponding input and output
index:

int inputIndex = engine.getBindingIndex (INPUT_ BLOB_NAME) ;
int outputIndex = engine.getBindingIndex (OUTPUT_BLOB NAME) ;

3. Using these indices, set up a buffer array pointing to the input and output buffers on
the GPU:

void* buffers[2];
buffers[inputIndex] = inputbuffer;
buffers[outputIndex] = outputBuffer;

4. TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA
stream:

context.enqueue (batchSize, buffers, stream, nullptr);

It is common to enqueue asynchronous memcpy () before and after the kernels to
move data from the GPU if it is not already there. The final argument to enqueue ()
is an optional CUDA event which will be signaled when the input buffers have been
consumed and their memory may be safely reused.

To determine when the kernels (and possibly memcpy ()) are complete, use standard
CUDA synchronization mechanisms such as events, or waiting on the stream.

2.7. Memory Management In C++

TensorRT provides two mechanisms to allow the application more control over device
memory.

By default, when creating an IExecutionContext, persistent device

memory is allocated to hold activation data. To avoid this allocation, call
createExecutionContextWithoutDeviceMemory. It is then the application’s
responsibility to call IExecutionContext: : setDeviceMemory () to provide the
required memory to run the network. The size of the memory block is returned by
ICudaEngine: :getDeviceMemorySize ().

In addition, the application can supply a custom allocator for use during build
and runtime by implementing the IGpuAllocator interface. Once the interface is
implemented, call

setGpuAllocator (&allocator) ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 15

TensorRT Tasks

on the IBuilder or IRuntime interfaces. All device memory will then allocated and
freed through this interface.

2.8. Initializing TensorRT in Python

There are two ways to initialize the TensorRT library:

» Create an IBuilder object to optimize a network.
» Create an IRuntime object to execute an optimized network.

In either case, you must implement a logging interface through which TensorRT
reports errors, warnings, and informational messages. The following code shows how
to implement the logging interface. In this case, we have suppressed informational
messages, and report only warnings and errors. There is a simple logger included in
tensorrt.infer.ConsolelLogger.

G_LOGGER = trt.infer.ConsoleLogger (trt.infer.LogSeverity.ERROR)

It is possible to create multiple runtime and builder objects; however the logger is a
singleton, so you should use the same object for each.

The builder or runtime will be created with the GPU context associated with the creating
thread. Although a default context will be created if it does not already exist, it is
advisable to create and configure the CUDA context before creating a runtime or builder
object.

2.9. Creating A Network Definition In Python

The first step in using TensorRT for inference is to create a TensorRT representation of
your network, from which TensorRT can build an optimized runtime.

Whether you choose to import a model using a parser or import an existing model
from a framework, both of these techniques are described below and are demonstrated
in Python. Even though the steps required here are executed in Python, they are very
similar to the steps outlined in Creating A Network Definition In C++.

TensorRT Python API is available for x86_64 platform only. For more information
please see Deep Learning SDK Documentation - TensorRT workflows.

2.9.1. Importing A Model Using A Parser In Python

To import a model using the Python Parser API, you will need to perform the following
high-level steps:

1. Create the TensorRT builder and network.
2. Create the TensorRT parser for the specific format.
3. Use the parser to parse the imported model and populate the network.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 16

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#python

TensorRT Tasks

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs.

2.9.2. Importing From Caffe Using Python

The following example shows how you can import a Caffe model directly using
the NvCaffeParser and the Python API. Related examples can be found in the . ./
examples/caffe to_trt/caffe mnist.py directory. For more information, see
sampleMNIST.

1. Import TensorRT as you would import any other package:

import tensorrt as trt

2. Define the data type. In this example, we will use float32.

datatype = trt.infer.DataType.FLOAT

3. Additionally, define some paths. Change the following paths to reflect where you
placed the model included with the samples:

MODEL PROTOTXT = '/data/mnist/mnist.prototxt’
CAFFE_MODEL = '/data/mnist/mnist.caffemodel'’
4. Create the builder:

builder = trt.infer.create_infer builder (G_LOGGER)
5. Create the network:

network = builder.create_network()

6. Create the parser:

parser = parsers.caffeparser.create caffe parser()

7. Parse the Caffe network and weights, and create the TensorRT network:

blob_name to_tensor = parser.parse (CAFFE_MODEL, MODEL PROTOTXT,
network, datatype)

The output is the populated network (passed as the argument to the parser). In
addition, the parser returns the blob_name_to_tensor - a table containing the
mapping from tensor names to ITensor objects.

2.9.3. Importing From TensorFlow Using Python

The following example shows how you can import a TensorFlow model directly

using the NvUffParser and the Python API. This example can be found in the <site-
packages>/tensorrt/examples/tf_to_trt directory. For more information, see the
tf_to_trt Python sample.

1. Import TensorRT and its UFF parser by running the following commands:

import tensorrt as trt
from tensorrt.parsers import uffparser

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 17

TensorRT Tasks

2. Create a frozen TensorFlow model for the tensorflow model. The instructions on

freezing a TensorFlow model into a stream can be found in Freezing A TensorFlow
Graph.

Use the UFF converter to convert a frozen tensorflow model to a UFF file. The
instructions on freezing the TensorFlow model and saving into a file can be found in
Convert a Tensorflow Model to UFF.

import uff
uff.from tensorflow_ frozen model (frozen_file, ["fc2/Relu"])

Create the UFF Parser to parse the UFF file into TensorRT network. The UFF also
requires the input and output nodes to be specified, along with dimensions of the
input node:

parser = uffparser.create uff parser()

This can be done in the following way:

parser.register_ input("Placeholder", (1, 28, 28), 0)
parser.register output("fc2/Relu")

TensorRT expects the input tensor be in CHW order. When importing from
TensorFlow, ensure that the input tensor is in the required order, and if not,
convert it to CHW.

Create the engine:

engine = trt.utils.uff to_trt_engine (G_LOGGER,
uff model,
parser,
MAX BATCHSIZE,
MAX WORKSPACE)

2.9.4. Importing From ONNX Using Python

The following example shows how you can import an ONNX model directly using
the NvOnnxParser and the Python API. For more information, see sample_onnx and
sampleOnnxMNIST.

1.

Import TensorRT as you would import any other package:

import tensorrt as trt

Import the NvOnnxParser to directly convert the ONNX model into the TensorRT
network. Similar to C++ APIs, the sample_onnx Python sample uses the config
object to pass user arguments to the parser object.

from tensorrt.parsers import onnxparser
apex = onnxparser.create_onnxconfig ()

Parse a trained image classification model and then generate TensorRT engine for
inference. Here we parse the user input arguments to generate the config object:

apex.set model filename("model file path")

apex.set model dtype(trt.infer.DataType.FLOAT)
apex.set print layer info(True) // Optional debug option
apex.report_parsing info() // Optional debug option

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 18

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/workflows/tf_to_tensorrt.html#Convert-a-Tensorflow-Model-to-UFF

TensorRT Tasks

In order to control the debug output, there are different ways you can control the
verbosity level:

apex.add verbosity ()
apex.reduce_verbosity ()

Or, you can set the specific verbosity level:

apex.set verbosity level(3)

4. After the config object is created and configured, you can create the parser. Ensure
you retrieve the parameters from the created object to parse the input model file:

trt_parser = onnxparser.create_onnxparser (apex)
data_type = apex.get model_ dtype ()
onnx_filename = apex.get model file name ()

5. Generate the TensorRT network after parsing the model file:

trt parser.parse (onnx_filename, data_type)

// retrieve the network from the parser
trt_parser.convert_ to_trt network()
trt_network = trt_parsr.get_ trt_network()

To perform inference, follow the instructions outlined in Performing Inference In
Python.

2.9.5. Importing From PyTorch And Other Frameworks

Using TensorRT with PyTorch (or any other framework with NumPy compatible
weights) involves replicating the network architecture using the TensorRT API, and then
copying the weights from PyTorch. For more information, see Working With PyTorch
And Other Frameworks.

To perform inference, follow the instructions outlined in Performing Inference In
Python.

2.10. Creating A Network Using The Python API

When creating a network, you must first define the engine and create a builder object
for inference. The Python API is used to create a network and engine from the Network
APIs. The network definition reference is used to add various layers to the network. For
more information, see sampleMNISTAPI.

In this example, we will create a simple network with Input, Convolution, Pooling,
FullyConnected, Activation and SoftMax layers.

1. Create the builder and the network:

builder
network

trt.infer.create_infer builder (G_LOGGER)
builder.create network()

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 19

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

TensorRT Tasks

Add the input layer to the network. We can define the input blob name with input
tensor dimensions. Any network can have multiple inputs. In this example, we have
one input of given name and dimension. Dimension is defined as tuple of channel,
height and width. We can also load the weights into a Weight map.

data = network.add input (INPUT LAYERS[0], dt, (1, INPUT_H, INPUT W))
weight map = trt.utils.load weights(weights_file)

Add the Convolution layer with hidden layer input nodes, strides and weights for
filter and bias:

convl = network.add convolution(scalel.get_output(0), 20, (5,5),
weight map["convlfilter"], weight map["convlbias"])
convl.set stride((1,1))

Weights passed to TensorRT layers are in host memory.

Add the Pooling layer with pooling type and dimension. We can also set the
corresponding stride for the pooling layer:

pooll = network.add pooling(convl.get_ output(0), trt.infer.PoolingType.MAX,
(2,2))
pooll.set_stride((2,2))

Add the FullyConnected and Activation layers:

ipl = network.add fully connected(pool2.get_output(0), 500,
weight map["iplfilter"], weight map["iplbias"])

relul = network.add activation(ipl.get_ output(0),
trt.infer . ActivationType.RELU)

Add the SoftMax layer to calculate the final probabilities and set it as the output:

prob = network.add softmax(ip2.get output(0))
prob.get_output(0) .set_name (OUTPUT_ LAYERS[O0])

Mark the output:

network.mark output (prob.get output(0))

2.11. Building An Engine In Python

One of the functions of the builder is to search through its catalog of CUDA kernels
for the fastest implementation available, and thus it is necessary use the same GPU for
building as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as
the precision at which the network should run, and autotuning parameters such as
how many times TensorRT should time each kernel when ascertaining which is fastest
(more iterations leads to longer runtimes, but less susceptibility to noise.) You can also
query the builder to find out what mixed precision types are natively supported by the

hardware.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 20

TensorRT Tasks

Two particularly important properties are the maximum batch size and the maximum
workspace size.

>

2.

The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

Build the engine using the builder object:

builder.set max batch_size (max_batch_size)
builder.set max_workspace size(l << 20)
engine = builder.build cuda_engine (network)

When the engine is built, TensorRT makes copies of the weights.
Dispense with the network, builder, and parser if using one.

For more information about building an engine in Python, see the caffe_mnist sample as
described in sampleMNIST and onnx_mnist as described in sampleOnnxMNIST.

2.12. Serializing A Model In Python

From here onwards you can either serialize the engine or you can use the engine directly

for inference. Serializing and deserializing a model is an optional step before using it for
inference - if desirable, the engine object can be used for inference directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

Run the builder as a prior offline step and then serialize:

IHostMemory *serializedModel = engine->serialize();
// store model to disk

// <.>
serializedModel->destroy () ;

Serialize the model to a modelstream and free up some memory by deleting the
engine and builder object:

modelstream = engine.serialize ()
engine.destroy ()
builder.destroy ()

Deserialize modelstream to perform inference. Deserializing requires creation of
runtime object:

runtime = trt.infer.create_infer runtime (GLOGGER)

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 21

TensorRT Tasks

engine =
runtime.deserialize cuda_engine (modelstream.data() ,modelstream.size(),
None)

modelstream.destroy ()

The final argument is a plugin layer factory for applications using custom layers.
More details can be found in Extending TensorRT With Custom Layers.

2.13. Performing Inference In Python

Once you have an engine, you can perform inference.

1.

Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

context = engine.create_execution_context()

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

Set up a buffer array pointing to the input and output buffers on the GPU:

d_input = cuda.mem_alloc(insize)

d_output cuda.mem _alloc (outsize)

bindings [int(d_input), int(d_output)]

TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA
stream:

context.enqueue (batch_size, bindings, stream.handle, None)

Copy the results back from the device output buffer to the output array:

cuda.memcpy dtoh_async(output, d _output, stream)

It is common to enqueue asynchronous memcpy () before and after the kernels to
move data from the GPU if it is not already there. The final argument to enqueue ()
is an optional CUDA event which will be signaled when the input buffers have been
consumed and their memory may be safely reused.

Determine when the kernels (and possibly memcpy ()) are complete, use standard
CUDA synchronization mechanisms such as events, or wait on the stream.

stream. synchronize ()
return output

2.14. Extending TensorRT With Custom Layers

TensorRT supports many types of layers and its functionality is continually extended;
however, there may be cases in which the layers supported do not cater to the
specific needs of a model. In this case, users can extend TensorRT functionalities by

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 22

TensorRT Tasks

implementing custom layers using the C++ API. Custom layers, often referred to as
plugins, are implemented and instantiated by an application, and their lifetime must
span their use within a TensorRT engine.

2.14.1. Adding Custom Layers Using The C++ API

A custom layer is implemented by extending the IP1luginExt class. Although users
extended the IP1ugin class in previous versions of TensorRT, it is now recommended
that users extend IPluginExt, which includes versioning (to maintain plugin
portability in future versions of TensorRT) and enables custom layers that support other
data formats beside NCHW and single precision. The remainder of this section refers

to plugins of type IPluginExt, although everything applies also to plugins of type
IPlugin except for multi-format specific support.

Plugins of type IP1lugin are assumed to support only single precision NCHW tensors.

A plugin layer is added to a network with the addPluginExt (see TensorRT APlIs)
method which creates and adds a layer to a network, and then binds the layer to
the given plugin. The method also returns a pointer to the layer (which is of type
IPluginLayerExt), which can be used to access the layer or the plugin itself (via
getPluginExt).

To properly connect a plugin layer to neighboring layers, and setup input and output
data structures, the builder checks what is the number of outputs and their dimensions
calling plugins methods:
getNbOutputs

Used to specify the number of output tensors.
getOutputDimensions

Used to specify the dimensions of an output as a function of the input dimensions.

In addition, during the build phase, the network is constructed and analyzed to generate
an engine, and the plugin is checked for formats supported:
supportsFormat

Used to check if a plugin supports a given data format.

Plugin layers can support four data formats and layouts. These are NCHW single and
half precision tensors, NC/2HW2 and NHWCS half precision tensors. The formats are
enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
getWorkspaceSize method, which is called by the builder to determine and pre-
allocate scratch space.

During both build and inference time, the plugin layer is configured and executed,
possibly multiple times. At build time, to discover optimal configurations, the layer is
configured, initialized, executed, and terminated. Once the optimal format is selected
for a plugin, the plugin is once again configured, and then it will be initialized once and
executed as many time as needed for the lifetime of the inference application, and finally

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 23

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

TensorRT Tasks

terminated when the engine is destroyed. These steps are controlled by the builder and
the engine using the following plugin methods:
configureWithFormat
Communicates input and output number, dimensions, datatype, format, and
maximum batch size. At this point, the plugin sets up its internal state, and select the
most appropriate algorithm and data structures for the given configuration.
initialize
The configuration is known at this time and the inference engine is being created, so
the plugin can set up its internal data structures and prepare for execution.
enqueue
Encapsulates the actual algorithm and kernel calls of the plugin, and provides the
runtime batch size, pointers to input, output, and scratch space, and the CUDA
stream to be used for kernel execution.
terminate
The engine context is destroyed and all the resources held by the plugin should be
released.

Serializing A Model In C++ introduces the serialization and deserialization of engines, to
enable storage and deployment of engines (for example, avoiding repeated build phases
in deployment). To support this capability, plugins also must support serialization and
deserialization; this is achieved by defining getSerializationSize returning the
required size to store the state of the plugin (including relevant configuration details)
and serialize, which must store the state in the given buffer. When the engine is
serialized it will first check the serialization size of the plugin, and then serialize the
plugin providing a buffer of the requested size.

Deserialization requires an additional IPluginFactory that recognizes plugin layers
and instantiates the corresponding plugin object. When the runtime, see Serializing A
Model In C++, deserializes the engine, it uses the plugin factory createPlugin method
to create plugin object for a given layer name and serialized image.

The C++ API can be used also to create custom layers for use in Python. C++ is the
preferred language to implement custom layers (for example, to easily access libraries
like CUDA and cuDNN). The custom layer created in C++ can be packaged using the
SWIG plugin in Python setuptools and then, the plugin can be loaded into a Python
application (see Creating A Network Using The Python API and TensorRT Python
Bindings). The same custom layer implementation can be used for both C++ and Python.

2.14.2. Using Custom Layers When Importing A Model
From A Framework

Custom layers can also be integrated with model parsers and used when importing
models. To extend a parser, users define a parser-specific factory. For more information,
see Creating A Network Definition In C++ or Creating A Network Definition In Python.

Namespaces nvcaffeparserl and nvuffparser, for Caffe and UFF respectively,
include a IPluginFactoryExt class (and IPluginFactory) that complements the
IPluginFactoryExt defined in namespace nvinferl. To be used within a parser, a
plugin factory must extend both the generic and parser-specific factory classes.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 24

TensorRT Tasks

The setPluginFactoryExt method of the parser sets the factory in the parser to enable
custom layers. While parsing a model description, for each layer, the parser invokes
isPluginExt to check with the factory if the layer name corresponds to a custom layer;
if it does, the parser instantiates the plugin invoking createPlugin with the name of
the layer (so that the factory can instantiates the corresponding plugin), a Weights array,
and the number of weights, (and a FieldCollection for UFF) as arguments. There

is no restriction on the number of plugins that a single factory can support if they are
associated with different layer names.

samplePlugin illustrates in detail an example of a custom layer and how to extend the
Caffe parser.

2.15. Working With Mixed Precision

Mixed precision is the combined use of different numerical precisions in a computational
method. TensorRT can store weights and activations, and execute layers, in 32-bit
floating point, 16-bit floating point, or quantized 8-bit integer.

Using precision lower than FP32 reduces memory usage, allowing deployment of larger
networks. Data transfers take less time, and compute performance increases, especially
on GPUs with Tensor Core support for that precision.

By default, TensorRT uses FP32 inference, but it also supports FP16 and INT8. While
running FP16 inference, it automatically converts FP32 weights to FP16 weights.

Specifying the precision for a network defines the minimum acceptable precision for
the application. Higher precision kernels may be chosen if they are faster for some
particular set of kernel parameters, or if no lower-precision kernel exists.

2.15.1. Enabling FP16 Inference Using C++

Setting the builder’s Fp16Mode flag indicates that 16-bit precision is acceptable.

builder->setFpl6Mode (true) ;

This flag allows, but does not guarantee, that 16-bit kernels will be used when building
the engine.

Weights can be specified in FP16 or FP32, and they will be converted automatically to
the appropriate precision for the computation.

See sampleGoogleNet for an example of running FP16 inference.

2.15.2. Enabling FP16 Inference Using Python

In Python, set the £p16_mode flag as follows:

builder.set_fpl6_mode (True) ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 25

TensorRT Tasks

For more information, see sample_onnx, mnist_api as shown in sampleMNIST, and
pytorch_to_trt. Both mnist_api and pytorch_to_trt samples show FP16 disabled by
default.

2.15.3. Optimizing INT8 Calibration Using C++ API

When using 8-bit quantized representation, TensorRT needs to understand the dynamic
range of each activation tensor so that it can choose an appropriate quantization scale.
The process of determining these scale factors is called calibration, and requires the
application to pass batches of representative input for the network (typically batches
from the training set.) Experiments indicate that about 500 images is sufficient for
calibrating ImageNet classification networks.

To provide calibration data to TensorRT, implement the IInt8Calibrator interface.
The builder invokes the calibrator as follows:

» First, it calls getBatchSize () to determine the size of the input batch to expect

» Then, it repeatedly calls getBatch () to obtain batches of input. Batches should
be exactly the batch size by getBatchSize (). When there are no more batches,
getBatch () should return false.

Calibration can be slow, therefore, the [Int8Calibrator interface provides methods for
caching intermediate data. Using these methods effectively requires a more detailed
understanding of calibration.

When building an INT8 engine, the builder performs the following steps:

1. Builds a 32-bit engine, runs it on the calibration set, and records a histogram for each
tensor of the distribution of activation values.

2. Builds a calibration table from the histograms.
3. Builds the INT8 engine from the calibration table and the network definition.

The calibration table can be cached. Caching is useful when building the same network
multiple times, for example, on multiple platforms. It captures data derived from the
network and the calibration set. The parameters are recorded in the table. If the network
or calibration set changes, it is the application’s responsibility to invalidate the cache.

The cache is used as follows:
» if a calibration table is found, calibration is skipped, otherwise:

» the calibration table is built from the histograms and parameters
» then the INTS8 network is built from the network definition and the calibration table.

Cached data is passed as a pointer and length.
After you have implemented the calibrator, you can configure the builder to use it:

builder->setInt8Mode (true) ;
builder->setInt8Calibrator (calibrator) ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 26

TensorRT Tasks

It is possible to cache the output of calibration using the writeCalibrationCache ()
and readCalibrationCache () methods. The builder checks the cache prior to
performing calibration, and if data is found, calibration is skipped.

For more information about configuring INT8 Calibrator objects, see sampleINT8.

2.15.4. Optimizing INT8 Calibration Using Python

The following example shows you how to create an INT8 Calibrator object using the
Python API. By default, TensorRT supports INT8 Calibration.

1. Import TensorRT as you would import any other package:

import tensorrt as trt

2. Similar to test/validation files, use set of input files as calibration files dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, we need to create batchstream object.
Batchstream object will be used to configure the calibrator.

NUM_IMAGES PER BATCH = 5
batchstream = ImageBatchStream(NUM IMAGES PER BATCH, calibration_files)

3. Create an Int8_ calibrator object with input nodes names and batch stream:

Int8 calibrator = trt.infer.EntropyCalibrator (["input_node name"],
batchstream)

4. Set INT8 mode and INTS8 Calibrator:

trt_builder = trt.infer.create_infer builder (G_LOGGER)
trt builder.set_int8 mode (True)
trt builder.set_int8 calibrator (Int8_ calibrator)

The rest of the logic for engine creation and inference is similar to Importing From
ONNX Using Python.

2.16. Deploying A TensorRT Optimized Model

After you've created a plan file containing your optimized inference model, you can
deploy that file into your production environment. How you create and deploy the plan
tile will depend on your environment. For example, you may have a dedicated inference
executable for your model that loads the plan file and then uses the TensorRT Execution
API to pass inputs to the model, execute the model to perform inference, and finally
read outputs from the model.

This section discusses how TensorRT can be deployed in some common deployment
environments.

2.16.1. Deploying In The Cloud

One common cloud deployment strategy for inferencing is to expose a model through a
server that implements an HTTP REST or gRPC endpoint for the model. A remote client

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 27

TensorRT Tasks

can then perform inferencing by sending a properly formatted request to that endpoint.
The request will select a model, provide the necessary input tensor values required by
the model, and indicate which model outputs should be calculated.

To take advantage of TensorRT optimized models within this deployment strategy does
not require any fundamental change. The inference server must be updated to accept
models represented by TensorRT plan files and must use the TensorRT Execution APIs
to load and executes those plans. An example of an inference server that provides a
REST endpoint for inferencing can be found in the NVIDIA Inference Server Container
Release Notes and Inference Server User Guide.

2.16.2. Deploying To An Embedded System

TensorRT can also be used to deploy trained networks to embedded systems such as
NVIDIA Drive PX. In this context, deployment means taking the network and using it
in a software application running on the embedded device, such as an object detection
or mapping service. Deploying a trained network to an embedded system involves the
following steps:

1. Export the trained network to a format such as UFF or ONNX which can be
imported into TensorRT (see Working With Deep Learning Frameworks for more
details).

2. Write a program that uses the TensorRT C++ API to import, optimize, and serialize
the trained network to a plan file (see sections Working With Deep Learning
Frameworks, Working With Mixed Precision, and Performing Inference In C++). For
the purpose of discussion, let’s call this program make_plan.

a) Optionally, perform INTS calibration and export a calibration cache (see Working
With Mixed Precision).

3. Build and run make_plan on the host system to validate the trained model before
deployment to the target system.

4. Copy the trained network (and INT8 calibration cache, if applicable) to the target
system. Re-build and re-run the make_plan program on the target system to
generate a plan file.

The make_plan program must run on the target system in order for the TensorRT
engine to be optimized correctly for that system. However, if an INT8 calibration
cache was produced on the host, the cache may be re-used by the builder on the
target when generating the engine (in other words, there is no need to do INT8
calibration on the target system itself).

After the plan file has been created on the embedded system, an embedded
application can create an engine from the plan file and perform inferencing with
the engine by using the TensorRT C++ API. For more information, see Performing
Inference In C++.

To walk through a typical use case where a TensorRT engine is deployed on an
embedded system, see:

» Deploying INT8 Inference For Autonomous Vehicles for DRIVE PX

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 28

http://docs.nvidia.com/deeplearning/dgx/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/dgx/inference-release-notes/index.html
http://docs.nvidia.com/deeplearning/dgx/inference-user-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#api
https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/

TensorRT Tasks

» GitHub for Jetson and Jetpack

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 29

https://github.com/dusty-nv/jetson-inference

Chapter 3.
WORKING WITH DEEP LEARNING
FRAMEWORKS

With the Python AP, an existing model built with TensorFlow, Caffe, or an ONNX
compatible framework can be used to build a TensorRT engine using the provided
parsers. The Python API also supports frameworks that store layer weights in a NumPy
compatible format, for example PyTorch.

3.1. Supported Operations

The following lists describe the operations that are supported in a Caffe or TensorFlow
framework and in the ONNX TensorRT parser:

Caffe
The following list describes the operations that are supported in a Caffe framework.

» Convolution

» Pooling

» InnerProduct

» SoftMax

» ReLU, TanH, Sigmoid
» LRN

» Power

» ElementWise

» Concatenation

» Deconvolution

» BatchNormalization
» Scale

» Crop

» Reduction

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 30

Working With Deep Learning Frameworks

» Reshape
» Permute
» Dropout
TensorFlow

The following list describes the operations that are supported in a TensorFlow
framework.

» Placeholder

» Const
» Add, Sub, Mul, Div, Minimum and Maximum
» BiasAdd

» Negative, Abs, Sqrt, Rsqrt, Pow, Exp and Log
» FusedBatchNorm
» ReLU, TanH, Sigmoid

» SoftMax
» Mean

» ConcatV2
» Reshape

» Transpose

» Conv2D

» DepthwiseConv2dNative
» ConvTranspose2D

» MaxPool

» AvgPool

» Pad is supported if followed by one of these TensorFlow layers: Conv2D,
DepthwiseConv2dNative, MaxPool, and AvgPool

ONNX
Since the ONNX parser is an open source project, the most up-to-date information
regarding the supported operations can be found in GitHub: ONNX TensorRT.

For a list of supported operators in an ONNX model, see the online Developer Guide.

For more information about each of the TensorRT layers, see TensorRT Layers.

3.2. Working With TensorFlow

For information on using TensorRT with a TensorFlow model, see:

» The tf_to_trt Python sample
» The lite_examples Python sample, if using the Lite API

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 31

https://github.com/onnx/onnx-tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#layers

Working With Deep Learning Frameworks

» Generate TensorRT Engines from Tensorflow (or other UFF Compatible
Frameworks)

3.2.1. Freezing A TensorFlow Graph

In order to use the command-line UFF utility, TensorFlow graphs must be frozen and
saved as .pb files. For more information, see:

» A Tool Developer's Guide to TensorFlow Model Files: Freezing
» Exporting trained TensorFlow models to C++ the RIGHT way!

3.2.2. Freezing A Keras Model

You can use the following sample code to freeze a Keras model.

from keras.models import load model

import keras.backend as K

from tensorflow.python.framework import graph io

from tensorflow.python.tools import freeze graph

from tensorflow.core.protobuf import saver pb2

from tensorflow.python.training import saver as saver 1lib

def convert keras to pb(keras model, out names, models dir,
model filename) :

model = load model (keras model)

K.set learning phase (0)

sess = K.get session()

saver = saver lib.Saver(write version=saver pb2.SaverDef.V2)
checkpoint path = saver.save(sess, 'saved ckpt', global step=0,
latest filename='checkpoint state')

graph io.write graph(sess.graph, '.', 'tmp.pb')

freeze graph.freeze graph('./tmp.pb', '',
False, checkpoint path, out names,
"save/restore all", "save/Const:0",
models dir+model filename, False, "")

3.2.3. Converting A Frozen Graph To UFF

You can use the following sample code to convert the . pb frozen graph to .uff format
file.

convert-to-uff tensorflow -o name of output uff file --input-
file
name of input pb file -O name of output tensor

You can list the TensorFlow layers:

convert-to-uff tensorflow --input-file name of input pb file -1

to figure out the name_of output_tensor value.

3.2.4. Working With TensorFlow RNN Weights

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 32

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/workflows/tf_to_tensorrt.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/workflows/tf_to_tensorrt.html
https://www.tensorflow.org/extend/tool_developers/#freezing
https://medium.com/@hamedmp/exporting-trained-tensorflow-models-to-c-the-right-way-cf24b609d183

Working With Deep Learning Frameworks

This section provides information about TensorFlow weights and their stored formats.
Additionally, the following sections will guide you on how to approach and decrypt
RNN weights from TensorFlow.

3.2.4.1. TensorFlow RNN Cells Supported In TensorRT

An RNN layer in TensorRT can be thought of as a Mul tiRNNCell from TensorFlow. One
layer consists of sublayers with the same configurations, in other words, hidden and
embedding size. This encapsulation is done so that the internal connections between the
multiple sublayers can be abstracted away from the user. This allows for simpler code
when deeper networks are involved.

TensorRT supports four different RNN layer types. These layer types are RNN relu,
RNN tanh, LSTM, and GRU. The TensorFlow cells that match these types are:

TensorRT RNN Relu/Tanh Layer
1. BasicRNNCell

a. Permitted activation functions: tf. tanh and tf.nn.relu.
b. This is a platform independent cell.

TensorRT LSTM Layer
1. BasicLSTMCell

a. forget_bias must be set to 0 when creating an instance of this cell in
TensorFlow. To support a non-zero forget bias, you need to preprocess the bias
by adding the parameterized forget bias to the dumped TensorFlow forget
biases.

b. This is a platform independent cell.

2. CudnnCompatibleLSTMCell

a. Same condition for the forget bias applies to this cell as it does to the

BasicLSTMCell.
b. TensorRT does not currently support peepholes so use_peepholes must be set
to False.
c. Thisis a cuDNN compatible cell.
TensorRT GRU Layer

1. CudnnCompatibleGRUCell

a. This is a cuDNN compatible cell.
b. Differs in implementation from standard, platform independent GRU cells. Due
to this, CudnnCompatiableGRUCell is the correct cell to use with TensorRT.

3.2.4.2. Maintaining Model Consistency Between TensorFlow And
TensorRT
For any TensorFlow cell not listed in TensorFlow RNN Cells Supported In TensorRT,

consult the TensorRT API and TensorFlow API to ensure the cell is mathematically
equivalent to what TensorRT supports and the storage format is consistent with the

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 33

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleLSTMCell
https://www.tensorflow.org/api_docs/python/tf/contrib/cudnn_rnn/CudnnCompatibleGRUCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://www.tensorflow.org/api_docs/

Working With Deep Learning Frameworks

format that you are expecting. One good way of doing this is to set up unit tests to
validate the output from TensorRT by using TensorFlow as the ground truth.

3.2.4.3. Workflow

We will be using the following workflow to extract and use TensorFlow weights:

Figure 4 TensorFlow RNN Workflow

3.2.4.4. Dumping The TensorFlow Weights

Python script dumpTFWts . py can be used to dump all the variables and weights from
a given TensorFlow checkpoint. The script is located in the /usr/src/tensorrt/
samples/common/dumpTFWts . py directory. Issue dumpTFWts.py -h for more
information on the usage of this script.

3.2.4.5. Loading Dumped Weights

Function loadWeights () loads from the dump of the dumpTFWts.py script. It has
been provided as an example in sampleCharRNN. The function signature is:

std: :map<std::string, Weights> loadWeights (const std::string file,
std: :unordered_set<std::string> names);

This function loads the weights specified by the names set from the specified file and
returns them in a std: :map<std: :string, Weights>.

3.2.4.6. Converting The Weights To A TensorRT Format

At this point, we are ready to convert the weights. To do this, the following steps are
required:

1. Understanding and using the TensorFlow checkpoint to get the tensor.
2. Understanding and using the tensors to extract and reformat relevant weights and
set them to the corresponding layers in TensorRT.

3.2.4.6.1. TensorFlow Checkpoint Storage Format

There are two possible TensorFlow checkpoint storage formats:
1. Platform independent format - separated by layer

a. Cell_i_kernel <Weights>
b. Cell i bias <Weights>
2. cuDNN compatible format - separated by input and recurrent

a. Cell i Candidate_Input kernel <Weights>
b. Cell i Candidate_ Hidden kernel <Weights>

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 34

Working With Deep Learning Frameworks

In other words, 1.1 Cell_i_kernel <Weights> in the concatenation

of 2.1 Cell_i_Candidate_Input_kernel <Weights>and 2.2

Cell i Candidate_Hidden_kernel <Weights>. Therefore, storage format 2 is
simply a more fine-grain version of storage format 1.

3.2.4.6.2. TensorFlow Kernel Tensor Storage Format

Before storing the weights in the checkpoint, TensorFlow transposes and then interleaves
the rows of transposed matrices. The order of the interleaving is described in the next
section. A figure is provided in BasicLSTMCell Example to further illustrate this format.

Gate Order Based On Layer Operation Type The transposed weight matrices are
interleaved in the following order:

1. RNN relu/tanh:
a. input gate (i)
2. LSTM:

a. input gate (i), cell gate (c), forget gate (£), output gate (o)
3. GRU:

a. reset (r), update (u)

3.2.4.6.3. Kernel Weights Conversion To A TensorRT Format

Converting the weights from TensorFlow format can be summarized in two steps.

1. Reshape the weights to push the interleaving down to a lower dimension.

2. Transpose the weights to get rid of the interleaving completely and have the weight
matrices stored contiguously in memory.

Transformation Utilities To help perform these transformations correctly,
reorderSubBuffers (), transposeSubBuffers (), and reshapeWeights () are
functions that have been provided. For more information, see /usr/include/x86_64-
linux-gnu/NvUtils.h.

3.2.4.6.4. TensorFlow Bias Weights Storage Format

The bias tensor is simply stored as contiguous vectors concatenated in the order
specified in TensorFlow Kernel Tensor Storage Format. If the checkpoint storage is
platform independent, then TensorFlow combines the recurrent and input biases into
a single tensor by adding them together. Otherwise, the recurrent and input biases and
stored in separate tensors.

3.2.4.6.5. Bias Tensor Conversion To TensorRT Format

Since the biases are stored as contiguous vectors, there aren’t any transformations that
need to be applied to get the bias into the TensorRT format.

3.2.4.7. BasicLSTMCell Example

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 35

3.2.4.7.1. BasicLSTMCell Kernel Tensor

Working With Deep Learning Frameworks

To understand the format in which these tensors are being stored, let us consider an
example of a BasicLSTMCell. Figure 5 illustrates what the tensor looks like within the
TensorFlow checkpoint.

w,'[0] w.'[0] w,'[0] W, '[0]

W,'[1] W, [1] Wi [1] W, '[1]

w,'[2] W,'[2] w([2] W, '[2]
W, [DS*-1] W' [DS*-1] Wi [DS*-1] W, [DS*-1]

R,"[0] R.[0] R{[0] R,'[0]

R/'[1] R:[1] R 1] R, '[1]

e Ri'[2] R.'[2] R{[2] Ro 2]
Ry [HS-1] R [HS-1] R [HS-1] Ro [HS-1]

Figure 5 Tensors within a TensorFlow checkpoint

DS/Data Size is distinct from Hidden Size for the first layer. For all the following
sublayers Data Size is equal to Hidden Size.

In Figure 5, W represents the input weights, R represents the hidden weights, DS
represents the data size, and HS represents hidden size.

Since this is a platform independent cell, the input weights and hidden weights have
been concatenated together. If we had used a CudnnCompatibleLSTMCell, then
these weights would have been split into two separate tensors.

Applying the conversion process discussed earlier will result in the converted tensor
shown in Figure 6.

www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | 36

Working With Deep Learning Frameworks

Figure 6 Converted tensors

Data Size is distinct from Hidden Size for the first layer in the sequence of RNN
sublayers. For all the following sublayers Data Size is equal to Hidden Size.

3.2.4.7.2. BasicLSTMCell Bias Tensor

Figure 7 illustrates the format in which the bias tensor is stored.

W, W, W; W,

Figure 7 Bias tensor stored format

Because this is a platform independent cell, W in the image above represents the result
of ElementWise adding the input and recurrent biases together. TensorFlow does this
addition internally to save memory before it stores the tensor.

This is already in the format we require, therefore, we do not need to apply any
transformations.

3.2.4.8. Setting The Converted Weights And Biases

The converted tensors for both the weights and bias are now ready to use. You need
to iterate over the tensors in the order specified in TensorFlow Kernel Tensor Storage

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 37

Working With Deep Learning Frameworks

Format and set the weights and bias using IRNNv2Layer: : setWeightsForGate () and
IRNNv2Layer: : setBiasForGate () functions, respectively.

If you are using a platform independent cell, you will need to set all the recurrent
biases manually using zeroed out dummy weights.

A real-world example of the training, dumping, converting, and setting process is
described in sampleCharRNN. For more information, consult the code in this sample.

3.3. Working With PyTorch And Other Frameworks

Using TensorRT with PyTorch and other frameworks involves replicating the network
architecture using the TensorRT API, and then copying the weights from PyTorch (or
any other framework with NumPy compatible weights). For more information on using
TensorRT with a PyTorch model, see:

» the pytorch_to_trt Python sample
» Generate TensorRT Engines from Tensorflow (or other UFF Compatible
Frameworks)

3.4. Working With The TensorRT Lite Engine

From A TensorFlow Model

The Lite Engine supports TensorFlow models directly by performing the conversion to
UFF internally. The model can be provided as a serialized graph or a path to a protobuf
tile by using the appropriate keyword argument.

mnist_engine = tensorrt.lite.Engine (framework="tf", #Source framework
path="mnist/lenet5 mnist frozen.pb", #Model
File
max_batch size=10, #Max number of images to

be processed at a time
input _nodes={"in":(1,28,28)}, #Input layers
output_nodes=["out"]) #Output layers

From A UFF Model
Similar to creating a TensorRT Lite Engine from a TensorFlow model, the TensorRT Lite
Engine API can accept a UFF model stream or a path to a UFF file.

stream = uff.from tensorflow frozen model ("mnist/lenet5 mnist frozen.pb" ,
["out"])

mnist_engine = tensorrt.lite.Engine (framework="uff",
stream=stream,input_nodes={"in":(1,28,28)},output_nodes=["out"])

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 38

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/topics/topics/workflows/tf_to_tensorrt.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/topics/topics/workflows/tf_to_tensorrt.html

Working With Deep Learning Frameworks

From A Caffe Model
The TensorRT Lite Engine API can also accept paths to a Caffe model file and deploy
tile.

mnist engine = tensorrt.lite.Engine (framework="cl",
#Source framework
deployfile="mnist/mnist.prototxt", #Deploy file
modelfile="mnist/mnist.caffemodel”, #Model File
max batch size=10, #Max number of images to be
processed at a time
input nodes={"data":(1,28,28)}, #Input layers
output nodes=["prob"], #Ouput layers
preprocessors={"data":sub_mean}, #Preprocessing
functions
postprocessors={"prob":argmax}) #Postprocesssing
functions

From A Plan File
The TensorRT Lite Engine API support loading prebuilt engines from plan files.

mnist engine = tensorrt.lite.Engine (PLAN="mnist.plan",
max_batch size=10,
preprocessors={"data":sub_mean},
postprocessors={"prob" :argmax})

3.4.1. Running Inference

After your engine is created, you can use the infer call to run inference on a set of data.
Your data can be provided to the Lite engine in a couple of ways. Each input must be a
NumPy array matching the input shape defined in the constructor. For example, if the
input shape for a layer is 1,28, 28, then each input must be in the shape 1,28,28. From
the base structure, the input data can be formatted as:

» A single input, for example, one image, as a 3D NumPy array matching the input
shape.

» A list or NumPy array of data, for example, a list of images as 3D NumPy arrays
where each 3D array matches the input layer shape.

This list or array can be as long as you want. Internally, the array will be batched
according to the max batch size.

» Alist or an array of batched data where each batch is a list or array of data with each
element being the shape of the input layer and the length of each batch is smaller
than the max batch size.

If you have multiple input layers, pass the inputs for each layer as a separate argument
to the engine in the order you defined the layers in the inputs dictionary of the
constructor. The format of each layer must be the same, down to batch sizes, if
applicable.

After inference has been run, the results are returned in the same format as the input
format. Data is always returned inside a list where the index refers to the output layer in
the same order as they were listed in the constructor.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 39

Working With Deep Learning Frameworks

For more information, see the examples in Working With The TensorRT Lite Engine.

3.4.2. Preprocessing And Postprocessing Function Tables

Typically, some preprocessing of input data before inference, and post-processing the
results of inference, is required to get usable results for a larger application. To allow
for cleaner code when integrating a Lite engine into a larger application, the constructor
allows users to populate a function table for preprocessing and post-processing each
input (3D NumPy array) and each result (also a 3D NumPy array).

For example, if a user provides a large amount of raw data to the infer function, then
each image is normalized before inference. Run ArgMax on each result to receive an
array of lists describing both the top class and the top-5 for each result.

In the following sample code, you will create a dictionary to contain your functions, each
keyed to the name of the respective layers. If you have multiple input layers but only
want to pre-process one, then you must have entries for all other layers still, but instead
of the function, pass None.

Preprocessing function
def normalize (data):
Each image is provided as a 3D numpy array (like how it’s provided to
inference function)
for i in range(len(data)): # normalize
data[i] = 1.0 - data[i] / 255.0
Reshape the data to the shape expected by the network
return data.reshape(1,28,28)

Lambda to apply argmax to each result after inference to get prediction

Instead of having to reshape, you can replace the 3D array provided to the
postprocessor with the object of your choosing (e.g. the top class)

argmax = lambda res: np.argmax (res.reshape (10))

Register pre and post processors to their layers

mnist_engine = tensorrt.lite.Engine (framework="tf", # Source framework
path=DATA DIR + "/mnist/

lenet5 mnist_ frozen.pb", # Model File
max_batch_size=10, # Max number of images

to be processed at a time
input nodes={"in":(1,28,28)}, # Input

layers
output_nodes=["out"], # Ouput layers
preprocessors={"in":normalize}, #
Preprocessing functions
postprocessors={"out" :argmax}) #

Postprocesssing functions

def generate_cases (num) :
Generate a list of raw data (data will be processed in the engine) and
answers to compare to
cases = []
labels = []
for ¢ in range (num) :
rand file = randint (0, 9)
im = Image.open(str(rand file) + ".pgm")
arr = np.array(im) .reshape(1l,28,28) #Make the image CHANNEL x HEIGHT x
WIDTH

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 40

Working With Deep Learning Frameworks

cases.append (arr) # Append the image to list of images to process
labels.append(rand file) # Append the correct answer to compare later
return cases, labels

def main():
Generate cases
data, target = generate_ cases(10)
Run inference on our generated cases doing preprocessing and
postprocessing internally
results = mnist engine.infer(data) [0] #Data is returned in a list by output
layer

Validate results
correct = 0
print (" [LABEL] | [RESULT]")
for 1 in range(len(target)):

print (" {} | {} ".format (target[l], results[l]))

if target[l] == results[l]:

correct += 1

print ("Inference: {:.2f}% Correct".format((correct / len(target)) * 100))

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 41

Chapter 4.
SAMPLES

The following samples show how to use TensorRT in numerous use cases while
highlighting different capabilities of the interface.

C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples directory. The
following C++ samples are shipped with TensorRT:

» sampleMNIST

» sampleMNISTAPI

» sampleUffMNIST

» sampleOnnxMNIST
» sampleGoogleNet

» sampleCharRNN

» sampleINT8

» samplePlugin

» sampleNMT

» sampleFasterRCNN
» sampleUffSSD

» sampleMovieLens

Python Examples
You can find the Python examples in the { PYTHON PACKAGE DIR}/tensorrt/
examples directory. The following Python examples are shipped with TensorRT:

» caffe_to_trt - functionally is identical to sampleMNIST

» custom_layers - functionally is identical to samplePlugin
» lite_examples

» resnet_as_a_service

» sample_onnx

» tf to_trt

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 42

Samples

» googlenet - functionally is identical to sampleGoogleNet

» mnist_api - functionally is identical to sampleMNISTAPI

» onnx_mnist - functionally is identical to sampleOnnxMNIST
» uff_mnist - functionally is identical to sampleUffMNIST

» pytorch_to_trt

The TensorRT package comes with multiple example implementations, which can be
found in one of the following locations:

Table 1 TensorRT Sample Application Implementations

In you installed TensorRT with: Examples are located in:

sudo apt-get install python(3)- /usr/lib/python{2.7,3.5}/dist-packages/
libnvinfer tensorrt/examples

sudo pip(3) install tensorrt.... /usr/local/lib/python{2.7,3.5}/dist-

packages/tensorrt/examples

pip(3) install --user tensorrt.... $HOME/ .local/lib/python{2.7,3.5}/dist-

packages/tensorrt/examples

4.1. sampleMNIST

What Does This Sample Do?
The sampleMNIST sample demonstrates how to:

» Perform the basic setup and initialization of TensorRT

» Import a trained Caffe model using Caffe parser (see Importing A Caffe Model
Using The C++ Parser API)

» Build an engine (see Building An Engine In C++)

» Serialize and deserialize the engine (see Serializing A Model In C++)

» Use the engine to perform inference on an input image (see Performing Inference In
C++)

Where Is This Sample Located?

The sampleMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleMNIST directory and is applicable to both C++ and Python environments. This
sample is functionally identical to the caffe_to_trt Python example. The caffe_to_trt
example is installed in the { PYTHON PACKAGE DIR}/tensorrt/examples/

caffe_ to_trt directory.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 43

Samples

Notes About This Sample:
The Caffe model was trained on the MNIST dataset, where the dataset is from the
NVIDIA DIGITS tutorial.

To verify whether the engine is operating correctly, sampleMNIST picks a 28x28 image
of a digit at random and runs inference on it using the engine it created. The output

of the network is a probability distribution on the digits, showing which digit is most
probably that in the image.

An example of ASCII rendering of the input image with digit 8:

@0eEEEE%= -@Ae* *EEEEEEE
@0P@EER :%#@-+#0E0. #@EEEED
@0@eEe* +@0@Ee: "@eP *@EEEER
@00eEe# +@0EP EEP% ©EEEEER
@0PEEER. :%@0.EEE. *EEEECEE
@00@eEee- -0EEQ- -@PEEECED
@00eEEERE%s: +@- :00EEEEEER
@00EEEEEERE%. : -@0EEEEEEER
@00EEEEEERENET #E0EEEREEER
@000PEEEAEERER+ :(@PEPERECED

Figure 8 ASCII output

An example of the output from network, classifying the digit 8 from the above image:

WSO E W@

Figure 9 Decision output

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 44

https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md

Samples

4.2. sampleMNISTAPI

What Does This Sample Do?

The sampleMNISTAPI sample is similar to sampleMNIST sample. Both of these samples
use the same model, handle the same input, and expect similar output. In contrast to
sampleMNIST, the sampleMNISTAPI demonstrates how to:

» Build a network by individually creating every layer

» Load the layers with theirs weights and connecting the layers by linking their inputs
and outputs

Where Is This Sample Located?

The sampleMNISTAPI sample is installed in the /usr/src/tensorrt/samples/
sampleMNISTAPI directory and is applicable to both C++ and Python environments.
This sample is functionally identical to the mnist_api Python example. The mnist_api
example is installed in the { PYTHON PACKAGE DIR}/tensorrt/examples/mnist_api
directory.

Notes About This Sample:

For a detailed description of how to create layers using the C++ API, see Creating A
Network Using The C++ APL For a detailed description of how to create layers using the
Python API, see Creating A Network Using The Python API.

Notes About Weights:

When you build a network by individually creating every layer, ensure you provide the
per-layer weights to TensorRT in host memory. You will need to extract weights from
their pre-trained model and deep learning framework and have these per-layer weights
loaded in host memory to pass to TensorRT during network creation.

4.3. sampleUffMNIST

What Does This Sample Do?
The sampleUffMNIST sample demonstrates how to:

» Implement a TensorFlow model trained on the MNIST dataset
» Create the UFF Parser (see Importing From TensorFlow Using Python)

» Use the UFF Parser, register inputs and outputs, provide the dimensions and the
order of the input tensor

» Load a trained TensorFlow model converted to UFF
» Build an engine (see Building An Engine In C++)

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 45

Samples

» Use the engine to perform inference (see Performing Inference In C++)

Where Is This Sample Located?

The sampleUffMNIST sample is installed in the /usr/src/tensorrt/samples/
sampleU££fMNIST directory and is applicable to both C++ and Python environments.
This sample is functionally identical to the uff_mnist Python example. The uff_mnist
example is installed in the {PYTHON PACKAGE DIR}/tensorrt/examples/uff mnist
directory.

Notes About This Sample:
The TensorFlow model has been converted to UFF using the explanation described in
Working With TensorFlow.

The UFF is designed to store neural networks as a graph. The NvUf{fParser that we use
in this sample parses the format in order to create an inference engine based on that
neural network.

With TensorRT, you can take a TensorFlow trained model, export it into a UFF protobuf
file, and convert it to run in TensorRT. The TensorFlow to UFF converter creates an
output file in a format called UFF which can then be read in TensorRT.

4.4, sampleOnnxMNIST

What Does This Sample Do?
The sampleOnnxMNIST sample demonstrates how to:

» Configure the ONNX parser
» Convert an MNIST network in ONNX format to a TensorRT network
» Build the engine and run inference using the generated TensorRT network

» Covers Importing An ONNX Model Using The C++ Parser API and Importing From
ONNX Using Python

The sampleOnnxMNIST sample shows the conversion of an MNIST network in Open
Neural Network Exchange (ONNX) format to a TensorRT network. ONNX is a standard
for representing deep learning models that enable models to be transferred between
frameworks. For more information about the ONNX format, see GitHub: ONNX. You
can find a collection of ONNX networks at GitHub: ONNX Models. The network used in
this sample can be found here.

Where Is This Sample Located?

The sampleOnnxMNIST sample is installed in the tensorrt/samples/
sampleOnnxMNIST directory and is applicable to both C++ and Python environments.
This sample is functionally identical to the onnx_mnist Python example. The

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 46

https://github.com/onnx/onnx
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/mnist

Samples

onnx_mnist example is installed in the { PYTHON PACKAGE DIR}/tensorrt/
examples/onnx_mnist directory.

4.4.1. Configuring The ONNX Parser

The I0nnxConfig class is the configuration manager class for the ONNX parser. The
configuration parameters can be set by creating an object of this class and set the model
file.

Set the appropriate ONNX model in the config object where onnx _filenameisac
string of the path to the filename containing that model:

IOnnxConfig config;
config.setModelFileName (onnx_filename) ;

The createONNXParser method requires a config object as an argument:

nvonnxparser: : IONNXParser* parser = nvonnxparser: :createONNXParser (*config) ;

The ONNX model file is then passed onto the parser:

if ('parser->parse(onnx_filename, dataType))

{

string msg("failed to parse onnx file");

glogger->log (nvinferl: :ILogger: :Severity: :kERROR, msg.c_str());
exit (EXIT FAILURE) ;

}

To view additional information about the network, including layer information and
individual layer dimensions, issue the following call:

config.setPrintLayerInfo (true)
parser->reportParsingInfo() ;

4.4.2. Converting The ONNX Model To A TensorRT
Network

The parser can convert the ONNX model to a TensorRT network which can be used for
inference:

if (!parser->convertToTRTNetwork()) ({
string msg ("ERROR, failed to convert onnx network into TRT network") ;
glogger->log(nvinferl: :ILogger: :Severity: :kERROR, msg.c_str());
exit (EXIT_FAILURE) ;
}

To get the TensorRT network, issue the following call:

nvinferl: :INetworkDefinition* network = parser->getTRTNetwork() ;

After the TensorRT network is built from the model, you can build the TensorRT engine
and run inference.

4.4.3. Building The Engine And Running Inference

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 47

Samples

Before you can run inference, you must first build the engine. To build the engine, create
the builder and pass a logger created for TensorRT which is used for reporting errors,
warnings and informational messages in the network:

IBuilder* builder = createInferBuilder (gLogger) ;

To build the engine from the generated TensorRT network, issue the following call:

nvinferl: :ICudaEngine* engine = builder->buildCudaEngine (*network) ;

To run inference using the created engine, see Performing Inference In C++ or
Performing Inference In Python.

It's important to preprocess the data and convert it to the format accepted by the
network. In this example, the sample input is in PGM (portable graymap) format. The
model expects an input of image 1x28x28 scaled to between [0,1].

After you build the engine, verify that the engine is running properly by confirming the
output is what you expected. The output format of this sample should be the same as the
output of the sampleMNIST described in sampleMNIST.

4.5. sampleGoogleNet

What Does This Sample Do?
The sampleGoogleNet sample demonstrates how to:

» Use FP16 mode in TensorRT
» Use TensorRT Half2Mode
» Use layer-based profiling

Where Is This Sample Located?

The sampleGoogleNet sample is installed in the /usr/src/tensorrt/samples/
sampleGoogleNet directory and is applicable to both C++ and Python environments.
This sample is functionally identical to the googlenet Python example. The googlenet
example is installed in the { PYTHON PACKAGE DIR}/tensorrt/examples/googlenet
directory.

4.5.1. Configuring The Builder

The sampleGoogleNet example builds a network based on a saved Caffe model and
network description. For more information, see Importing A Caffe Model Using The C++
Parser API or Importing From Caffe Using Python.

This sample uses optimized FP16 mode (see Enabling FP16 Inference Using C++ or
Enabling FP16 Inference Using Python). To use Hal£2Mode, two additional steps are
required:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 48

Samples

1. Create an input network with 16-bit weights, by supplying the DataType::kKHALF
parameter to the parser.

const IBlobNameToTensor *blobNameToTensor =
parser->parse (locateFile (deployFile) .c str (),
locateFile (modelFile) .c str (),
*network, B
DataType: : kHALF) ;

2. Configure the builder to use Half2Mode.

builder->setFploMode (true) ;

4.5.2. Profiling

To profile a network, implement the IProfiler interface and add the profiler to the
execution context:

context.profiler = &gProfiler;

Profiling is not currently supported for asynchronous execution, therefore, use TensorRT
synchronous execute () method:

for (int 1 = 0; 1 < TIMING_ITERATIONS;i++)
engine->execute (context, buffers);

After execution has completed, the profiler callback is called once for every layer. The
sample accumulates layer times over invocations, and averages the time for each layer at
the end.

The layer names are modified by TensorRT layer-combining operations, so the reported
layer names in the profiling output may not be a one-to-one map to the original

layer names. For example, the layers inception_5a/3x3 and inception_5a/
relu_3x3in the original network are fused into one layer named inception_5a/3x3 +
inception 5a/relu_ 3x3.

4.6. sampleCharRNN

What Does This Sample Do?

The sampleCharRNN sample demonstrates how to generate a simple RNN based on the
charRNN network using the Penn Treebank (PTB) dataset. For more information about
character level modeling, see char-rnn.

Where Is This Sample Located?
The sampleCharRNN sample is installed in the /usr/src/tensorrt/samples/
sampleCharRNN directory.

Notes About This Sample:
Use the TensorRT API documentation to familiarize yourself with the following layers:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 49

https://catalog.ldc.upenn.edu/ldc99t42
https://github.com/karpathy/char-rnn
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

» RNNv2 layer

» Weights are set for each gate and layer individually.

» The input format for RNNv2 is BSE (Batch, Sequence, Embedding).
» MatrixMultiply
» ElementWise
» TopK

4.6.1. Network Configuration

The CharRNN network is a fairly simple RNN network. The input into the network is a
single character that is embedded into a vector of size 512. This embedded input is then
supplied to a RNN layer containing two stacked LSTM cells. The output from the RNN
layer is then supplied to a fully connected layer, which can be represented in TensorRT
by a Matrix Multiply layer followed by an ElementWise sum layer. Constant layers are
used to supply the weights and biases to the Matrix Multiply and ElementWise Layers,
respectively. A TopK operation is then performed on the output of the ElementWise
sum layer where K = 1 to find the next predicted character in the sequence. For more
information about these layers, see the TensorRT API documentation.

4.6.1.1. RNNv2 Layer Setup

The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer () function. This layer consists of the following configuration
parameters:
Operation

This defines the operation of the RNN cell. Supported operations are currently relu,

LSTM, GRU, and tanh.

Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear

mode), or the matrix multiply is skipped (skip mode).

For the purpose of the CharRNN network, we will be using a linear, unidirectional
LSTM cell containing LAYER COUNT number of stacked layers. The code below shows
how to create this RNNv2 layer.

auto rnn = network->addRNNv2 (*data, LAYER COUNT, HIDDEN SIZE, SEQ SIZE,
RNNOperation: : kLSTM) ;

For the RNNv2 layer, weights and bias need to be set separately. For more
information, see RNNv2 Layer - Optional Inputs.

For more information, see the TensorRT API documentation.

4.6.1.2. RNNv2 Layer - Optional Inputs

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 50

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState
calls. These are optional inputs to the RNN.

rnn->setHiddenState (*hiddenlIn) ;
if (rnn->getOperation() == RNNOperation: :kLSTM)
rnn->setCellState (*cellln) ;

4.6.1.3. MatrixMultiply Layer Setup

The Matrix Multiplication layer is used to execute the first step of the functionality
provided by a FullyConnected layer. As shown in the code below, a Constant layer
will need to be used so that the FullyConnected weights can be stored in the engine.
The output of the Constant and RNN layers are then used as inputs to the Matrix
Multiplication layer. The RNN output is transposed so that the dimensions for the
MatrixMultiply are valid.

weightMap["trt fcw"] = transposeFCWeights (weightMap[FCW_NAME]) ;

auto fcwts = network->addConstant (Dims2 (VOCAB_SIZE, HIDDEN_ SIZE),
weightMap["trt_fcw"]) ;

auto matrixMultLayer = network->addMatrixMultiply (
*fcwts->getOutput (0) , false, *rnn->getOutput(0), true);

assert (matrixMultlLayer !'= nullptr);

matrixMultLayer->getOutput (0) ->setName ("Matrix Multiplicaton output") ;

For more information, see the TensorRT API documentation.

4.6.1.4. ElementWise Layer Setup

The ElementWise layer is used to execute the second step of the functionality provided
by a FullyConnected layer. The output of the fcbias Constant layer and Matrix
Multiplication layer are used as inputs to the ElementWise layer. The output from this
layer is then supplied to the TopK layer. The code below demonstrates how to setup the
layer:

auto fcbias = network->addConstant (Dims2 (VOCAB_SIZE, 1), weightMap[FCB NAME]) ;
auto addBiasLayer = network->addElementWise (

*matrixMultLayer->getOutput(0),

*fcbias->getOutput (0) , ElementWiseOperation: :kSUM) ;

assert(addBiasLayer !'= nullptr);

addBiasLayer-getOutput (0) ->setName ("Add Bias output") ;

For more information, see the TensorRT API documentation.

4.6.1.5. TopK Layer Setup

The TopK layer is used to identify the character that has the maximum probability of
appearing next.

The layer has two outputs. The first output is an array of the top K values. The
second, which is of more interest to us, is the index at which these maximum values
appear.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 51

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the
second output of the layer.

auto pred = network->addTopK (*softMax->getOutput(0),
nvinferl: :TopKOperation::kMAX, 1, REDUCE_AXES) ;

assert(pred !'= nullptr);

pred->getOutput (1) ->setName (OUTPUT_BLOB_NAME) ;

For more information, see the TensorRT API documentation.

4.6.1.6. Marking The Network Outputs

After the network is defined, mark the required outputs. RNN output tensors that are
not marked as network outputs or used as inputs to another layer are dropped.

network->markOutput (*pred->getOutput (1)) ;
pred->getOutput (1) ->setType (DataType: : kINT32) ;
rnn->getOutput (1) ->setName (HIDDEN OUT BLOB_NAME) ;
network->markOutput (*rnn->getOutput (1)) ;

if (rnn->getOperation() == RNNOperation: :kLSTM)

{

rnn->getOutput (2) ->setName (CELL_OUT_BLOB_NAME) ;
network->markOutput (*rnn->getOutput (2)) ;

}i

4.6.2. RNNv2 Workflow - From TensorFlow To TensorRT

The following sections provide an end-to-end walkthrough of how to train your model
in TensorFlow and convert the weights into a format that TensorRT can use.

4.6.2.1. Training A CharRNN Model With TensorFlow

TensorFlow has a useful RNN Tutorial which can be used to train a word level model.
Word level models learn a probability distribution over a set of all possible word
sequence. Since our goal is to train a char level model, which learns a probability
distribution over a set of all possible characters, a few modifications will need to be
made to get the TensorFlow sample to work. These modifications can be seen here.

There are also multiple GitHub repositories that contain CharRNN implementations that
will work out of the box. Tensorflow-char-rnn is one such implementation.

4.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint

A python script /usr/src/tensorrt/samples/common/dumpTFWts . py has been
provided to extract the weights from the model checkpoint files that are created during
training. Use dumpTFWts.py -h for directions on the usage of the script.

4.6.2.3. Loading And Converting Weights Format

After the TensorFlow weights have been exported into a single WTS file, the next step is
to load the weights and convert them into the TensorRT weights format. This is done by
the loadWeights and then the convertRNNWeights and convertRNNBias functions.
The functions contain detailed descriptions of the loading and conversion process. You
can use those as guides in case you need to write your own conversion functions. After

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 52

http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://www.tensorflow.org/tutorials/recurrent
http://deeplearningathome.com/2016/10/Text-generation-using-deep-recurrent-neural-networks.html
https://github.com/crazydonkey200/tensorflow-char-rnn

Samples

the conversion has taken place, the memory holding the converted weights is added to
the weight map so that it can be deallocated once the engine has been built.

Weights rnnwLO
Weights rnnbLO
Weights rnnwLl
Weights rnnbLl

convertRNNWeights (weightMap [RNNW_LO_NAME]) ;
convertRNNBias (weightMap [RNNB L0 NAME]) ;
convertRNNWeights (weightMap [RNNW_L1 NAME]) ;
convertRNNBias (weightMap [RNNB L1 NAME]) ;

weightMap["rnnwL0"] = rnnwLO;
weightMap|["rnnbL0"] = rnnbLO;
weightMap["rnnwLl"] = rnnwLl;
weightMap["rnnbLl"] = rnnbLl;

4.6.2.4. RNNv2: Setting Weights And Bias

After the conversion to the TensorRT format, the RNN weights and biases are stored in
their respective contiguous arrays. They are stored in the format of [Wi, Wpi, Wyc,
Wro, Rpyf, Ryi, Rpe, Rpo], where:
W

The weights for the input.
R

The weights for the recurrent input.

Corresponds to the forget gate.
Corresponds to the input gate.
Corresponds to the cell gate.

Corresponds to the output gate.

The code below takes advantage of this memory layout and iterates over the two layers
and the eight gates to extract and set the correct gate weights and gate biases for the
RNN layer.

for (int gateIndex = 0; gateIndex < NUM GATES; gateIndex++)
{
// extract weights and bias for a given gate and layer
Weights gateWeightLO{.type = dataType,
.values = (void*) (wtsLO + kernelOffset),
.count = DATA SIZE * HIDDEN_ SIZE};
Weights gateBiasLO{.type = dataType,
.values = (void*) (biasesLO0 + biasOffset),
.count = HIDDEN SIZE};
Weights gateWeightLl{.type = dataType,
.values = (void*) (wtsLl + kernelOffset),
.count = DATA SIZE * HIDDEN_ SIZE};
Weights gateBiasLl{.type = dataType,
.values = (void*) (biasesLl + biasOffset),
.count = HIDDEN SIZE};

// set weights and bias for given gate

rnn->setWeightsForGate (0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateWeightLO) ;

rnn->setBiasForGate (0, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiasLO) ;

rnn->setWeightsForGate (1, gateOrder[gateIndex % 4],

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 53

Samples

(gateIndex < 4), gateWeightLl) ;
rnn->setBiasForGate (1, gateOrder[gateIndex % 4],
(gateIndex < 4), gateBiasll);

// Update offsets
kernelOffset = kernelOffset + DATA SIZE * HIDDEN SIZE;
biasOffset = biasOffset + HIDDEN SIZE;

4.6.3. Seeding The Network

After the network is built, it is seeded with preset inputs so that the RNN can start
generating data. Inside stepOnce, the output states are preserved for use as inputs on
the next timestep.

for (auto &a : input)
{
std: :copy(static_cast<const float*>(embed.values) +
char to_id[a] *DATA SIZE,
static_cast<const float*>(embed.values) + char to_id[a] *DATA_SIZE +
DATA SIZE,
data[INPUT IDX]) ;
stepOnce (data, output, buffers, indices, stream, context);
cudaStreamSynchronize (stream) ;

// Copy Ct/Ht to the Ct-1/Ht-1 slots.

std: :memcpy (data[HIDDEN IN IDX], data[HIDDEN OUT_ IDX],
gSizes[HIDDEN IN IDX] * sizeof (float));

std: :memcpy (data[CELL_IN IDX], data[CELL_OUT IDX], gSizes[CELL_IN IDX] *
sizeof (float)) ;

genstr.push back(a) ;

}
// Extract first predicted character
uint32_t predIdx = *reinterpret_ cast<uint32_t*>(data[OUTPUT_IDX]) ;

genstr. push back (id_to_char[predIdx]) ;

4.6.4. Generating Data

The following code is similar to the seeding code, however, this code generates an
output character based on the output probability distribution. The following code
simply selects the character with the highest probability. The final result is stored in
genstr.

for (size_t x = 0, y = expected.size(); x < y; ++x)
{
std: :copy (static_cast<const float*>(embed.values) +
char to_id[*genstr.rbegin()]*DATA SIZE,
static_cast<const float*>(embed.values) +
char_to_id[*genstr.rbegln()]*DATA_SIZE + DATA SIZE,
data [INPUT_IDX]) ;

stepOnce (data, output, buffers, indices, stream, context);
cudaStreamSynchronize (stream) ;

// Copy Ct/Ht to the Ct-1/Ht-1 slots.

std: memcpy(data[HIDDEN IN IDX], data[HIDDEN ouT IDX],
gSizes[HIDDEN IN IDX] * 51zeof(float)),

std: :memcpy (data[CELL_IN IDX], data[CELL OUT_IDX], gSizes[CELL IN IDX] *
sizeof (float)) ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 54

Samples

uint32_t predIdx = * (output);
genstr.push back(id_to_char[predIdx]) ;
}

4.7. sampleINT8

What Does This Sample Do?
The sampleINT8 sample provides the steps involved when performing inference in 8-bit
integer (INT8).

INT8 inference is available only on GPUs with compute capability 6.1 or 7.x.

The sampleINT8 sample demonstrates how to:

» Perform INTS calibration

» Perform INTS8 inference

» Calibrate a network for execution in INT8

» Cache the output of the calibration to avoid repeating the process

» Repo your own experiments with Caffe in order to validate your results on
ImageNet networks

Where Is This Sample Located?
The sampleINT8 sample is installed in the /usr/src/tensorrt/samples/
sampleINT8 directory.

Notes About This Sample:

INTS engines are built from 32-bit network definitions and require significantly more
investment than building a 32-bit or 16-bit engine. In particular, the TensorRT builder
must perform a process called calibration to determine how best to represent the
weights and activations as 8-bit integers.

The sample is accompanied by the MNIST training set, but may also be used to calibrate
and score other networks. To run the sample on MNIST, use the command line:

./sample int8 mnist

4.7.1. Defining The Network

Defining a network for INT8 execution is exactly the same as for any other precision.
Weights should be imported as FP32 values, and TensorRT will calibrate the network
to find appropriate quantization factors to reduce the network to INT8 precision. This
sample imports the network using the NvCaffeParser:

const IBlobNameToTensor* blobNameToTensor =
parser->parse (locateFile (deployFile) .c_str(),

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 55

Samples

locateFile (modelFile) .c_str(),
*network,
DataType: : kFLOAT) ;

4.7.2. Building The Engine

Calibration is an additional step required when building networks for INT8. The
application must provide TensorRT with sample input. TensorRT will then perform
inference in FP32 and gather statistics about intermediate activation layers that it will
use to build the reduce precision INT8 engine.

4.7.2.1. Calibrating The Network

The application must specify the calibration set and parameters by implementing the
IInt8Calibrator interface. Because calibration is an expensive process that may need to
run multiple times, the interface provides methods for caching intermediate values.

4.7.2.2. Calibration Set

Calibration must be performed using images representative of those which will be

used at runtime. Since the sample is based around Caffe, any image preprocessing that
Caffe would perform prior to running the network (such as scaling, cropping, or mean
subtraction) will be done in Caffe and captured as a set of files. The sample uses a utility
class (Batchstream) to read these files and create appropriate input for calibration.
Generation of these files is discussed in Batch Files For Calibration.

The builder calls the getBatchSize () method once, at the start of calibration, to obtain
the batch size for the calibration set. The method getBatch () is then called repeatedly
to obtain batches from the application, until the method returns false. Every calibration
batch must include exactly the number of images specified as the batch size.

bool getBatch (void* bindings[], const char* names[], int
nbBindings) override

{
if (!mStream.next ())
return false;

CHECK (cudaMemcpy (mDeviceInput, mStream.getBatch(),
mInputCount * sizeof (float), cudaMemcpyHostToDevice)) :;

assert (!strcmp (names[0], INPUT BLOB NAME)) ;

bindings[0] = mDevicelInput;

return true;

}

For each input tensor, a pointer to input data in GPU memory must be written into the
bindings array. The names array contains the names of the input tensors. The position
for each tensor in the bindings array matches the position of its name in the names array.
Both arrays have size nbBindings.

The calibration set must be representative of the input provided to TensorRT at
runtime; for example, for image classification networks, it should not consist of

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 56

Samples

images from just a small subset of categories. For ImageNet networks, around 500
calibration images is adequate.

4.7.3. Configuring The Builder

There are two additional methods to call on the builder:

builder->setInt8Mode (true) ;
builder->setInt8Calibrator (calibrator);

4.7.4. Running The Engine

After the network has been built, it can be used just like an FP’32 network, for example,
inputs and outputs remain in 32-bit floating point.

4.7.5. Verifying The Output

This sample outputs Top-1 and Top-5 metrics for both FP32 and INT8 precision, as well
as for FP16 if it is natively supported by the hardware. These numbers should be within
1%.

4.7.6. Batch Files For Calibration

The sampleINT8 sample uses batch files in order to calibrate for the INT8 data. The INT8
batch file is a binary file containing a set of N images, whose format is as follows:

» Four 32-bit integer values representing {N,C, H, W} representing the number of
images N in the file, and the dimensions {C, H, W} of each image.

> N 32-bit floating point data blobs of dimensions {C, H, W} that are used as inputs
to the network.

4.7.6.1. Generating Batch Files For Caffe Users

Calibration requires that the images passed to the calibrator are in the same format

as those that will be passed to TensorRT at runtime. For developers using Caffe for
training, or who can easily transfer their network to Caffe, a supplied patchset supports
capturing images after image preprocessing.

These instructions are provided so that users can easily use the sample code to test
accuracy and performance on classification networks. In typical production use cases,
applications will have such preprocessing already implemented, and should integrate
with the calibrator directly.

These instructions are for Caffe git commit
473£143£9422e7£fc66e9590da6b2albb88e50b2f from GitHub: BVLC Caffe. The
patchfile might be slightly different for later versions of Caffe.

1. Apply the patch. The patch can be applied by going to the root directory of the Caffe
source tree and applying the patch with the command:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 57

https://github.com/BVLC/caffe.git

Samples

patch -pl < int8_caffe.patch

Rebuild Caffe and set the environment variable

TENSORRT_INT8 BATCH DIRECTORY to the location where the batch files are to be
generated.

After training for 1000 iterations, there are 1003 batch files in the directory specified.
This occurs because Caffe preprocesses three batches in advance of the current iteration.

These batch files can then be used with the BatchStream and Int8Calibrator to
calibrate the data for INTS.

When running Caffe to generate the batch files, the training prototxt, and not the
deployment prototxt, is required to be used.

The following example depicts the sequence of commands to run . /sample_int8
mnist with Caffe generated batch files.

1.

Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data
mkdir -p int8/mnist
cd int8/mnist

If Caffe is not installed anywhere, ensure you clone, checkout, patch, and build
Caffe at the specific commit:

git clone https://github.com/BVLC/caffe.git

cd caffe

git checkout 473f143£9422e7£fc66e9590da6b2albb88e50b2f
patch -pl < <TensorRT>/samples/mnist/int8 caffe.patch
mkdir build

pushd build

cmake -DUSE_OPENCV=FALSE -DUSE_CUDNN=OFF . ./

make -3j4

popd

Download the mnist dataset from Caffe and create a link to it:

bash data/mnist/get _mnist.sh

bash examples/mnist/create mnist.sh
cd ..

1ln -s caffe/examples .

Set the directory to store the batch data, execute Caffe, and link the mnist files:

mkdir batches

export TENSORRT INT8 BATCH DIRECTORY=batches

caffe/build/tools/caffe test -gpu 0 -iterations 1000 -model examples/mnist/
lenet train_ test.prototxt -weights
<TensorRT>/samples/mnist/mnist.caffemodel

1ln -s <TensorRT>/samples/mnist/mnist.caffemodel

1ln -s <TensorRT>/samples/mnist/mnist.prototxt .

Execute sampleINTS8 from the bin directory after being built with the following
command:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 58

Samples

./sample int8 mnist

4.7.6.2. Generating Batch Files For Non-Caffe Users

For developers that are not using Caffe, or cannot easily convert to Caffe, the batch files
can be generated via the following sequence of steps on the input training data.

1.
2.
3.

4.

Subtract out the normalized mean from the dataset.
Crop all of the input data to the same dimensions.

Split the data into batch files where each batch file has N preprocessed images and
labels.

Generate the batch files based on the format specified in Batch Files for Calibration.

The following example depicts the sequence of commands to run . /sample_int8
mnist without Caffe.

1.

Navigate to the samples data directory and create an INT8 mnist directory:

cd <TensorRT>/samples/data

mkdir -p int8/mnist/batches

cd int8/mnist

In -s <TensorRT>/samples/mnist/mnist.caffemodel
In -s <TensorRT>/samples/mnist/mnist.prototxt

Copy the generated batch files to the int8/mnist/batches/ directory.

Execute sampleINTS8 from the bin directory after being built with the command . /
sample int8 mnist.

./sample int8 mnist

4.8. samplePlugin

What Does This Sample Do?

The samplePlugin demonstrates how to add a Custom layer to TensorRT. This example

implements the MNIST model with the difference that the final FullyConnected layer is

replaced by a Custom layer. To read more information about MNIST, see sampleMNIST,
sampleMNISTAPI, and sampleUffMNIST.

The samplePlugin sample demonstrates how to:

>

>

>

Define a Custom layer that supports multiple data formats
Define a Custom layer that can be serialized and deserialized
Enable a Custom layer in NvCaffeParser

Where Is This Sample Located?
The samplePlugin sample is installed in the /usr/src/tensorrt/samples/
samplePlugin directory and is applicable to both C++ and Python environments.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 59

Samples

This sample is functionally identical to the custom_layers Python example. The
custom_layers example is installed in the { PYTHON PACKAGE DIR}/tensorrt/
examples/custom_layers directory.

Notes About This Sample:

The Custom layer implements the FullyConnected layer using gemm routines (Matrix
Multiplication) in cuBLAS, and tensor addition in cuDNN (bias offset). This sample
illustrates the definition of the FCP1lugin for the Custom layer, and the integration with
NvCaffeParser.

4.8.1. Defining The Network

The FCPlugin redefines the FullyConnected layer, which in this case has a single
output. Accordingly, getNbOutputs returns 1 and getOutputDimensions includes
validation checks and returns the dimensions of the output:

Dims getOutputDimensions (int index, const Dims* inputDims,
int nbInputDims) override

{

assert(index == 0 && nbInputDims == 1 &&
inputDims[0] .nbDims == 3);
assert (mNbInputChannels == inputDims[0].d[0] *

inputDims[0] .d[1] *
inputDims[0] .d[2]) ;
return DimsCHW (mNbOutputChannels, 1, 1);
}

4.8.2. Enabling Custom Layers In NvCaffeParser

The model is imported using NvCaffeParser (see Importing A Caffe Model Using The C
++ Parser API and Using Custom Layers When Importing A Model From A Framework).
To use the FCPlugin implementation for the FullyConnected layer, a plugin factory is
defined which recognizes the name of the FullyConnected layer (inner product ip2 in
Caffe).

bool isPlugin(const char* name) override
{ return !strcmp(name, "ip2"); }

The factory can then instantiate FCPlugin objects as directed by the parser. The
createPlugin method receives the layer name, and a set of weights extracted from
the Caffe model file, which are then passed to the plugin constructor. Since the lifetime
of the weights and that of the newly created plugin are decoupled, the plugin makes a
copy of the weights in the constructor.

virtual nvinferl::IPlugin* createPlugin(const char* layerName, const
nvinferl: :Weights* weights, int nbWeights) override

{

mPlugin =
std: :unique ptr<FCPlugin>(new FCPlugin (weights,nbWeights)) ;

return mPlugin.get() ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 60

Samples

4.8.3. Building The Engine

FCPlugin does not need any scratch space, therefore, for building the engine, the most
important methods deal with the formats supported and the configuration. FCPlugin
supports two formats: NCHW in both single and half precision as defined in the
supportsFormat method.

bool supportsFormat(DataType type, PluginFormat format) const override

{
return (type == DataType: :kFLOAT || type == DataType: :kHALF) &&
format == PluginFormat: :kNCHW;
}

Supported configurations are selected in the building phase. The builder selects a
configuration with the networks configureWithFormat () method, to give it a chance
to select an algorithm based on its inputs. In this example, the inputs are checked

to ensure they are in a supported format, and the selected format is recorded in a
member variable. No other information needs to be stored in this simple case; in more
complex cases, you may need to do so or even choose an ad-hoc algorithm for the given
configuration.

void configureWithFormat(..., DataType type, PluginFormat format, ...) override

{
assert ((type == DataType: :kFLOAT || type == DataType: :kHALF) &&
format == PluginFormat: :kNCHW) ;
mDataType = type;
}
The configuration takes place at build time, therefore, any information or state
determined here that is required at runtime should be stored as a member variable of the

plugin, and serialized and deserialized.

4.8.4. Serializing And Deserializing

Fully complaint plugins support serialization and deserialization, as described

in Serializing A Model In C++. In the example, FCP1lugin stores the number of
channels and weights, the format selected, and the actual weights. The size of
these variables makes up for the size of the serialized image; the size is returned by
getSerializationSize:

virtual size t getSerializationSize() override

{
return sizeof (mNbInputChannels) + sizeof (mNbOutputChannels) +
sizeof (mBiasWeights.count) + sizeof (mDataType) +
(mKernelWeights.count + mBiasWeights.count) *
type2size (mDataType) ;
}

Eventually, when the engine is serialized, these variables are serialized, the weights
converted is needed, and written on a buffer:

virtual void serialize (void* buffer) override

{
char* d = static_cast<char*>(buffer), *a = d;
write(d, mNbInputChannels) ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 61

Samples

convertAndCopyToBuffer (d, mKernelWeights) ;
convertAndCopyToBuffer (d, mBiasWeights) ;
assert(d == a + getSerializationSize())

}

Then, when the engine is deployed, it is deserialized. As the runtime scans the serialized
image, when a plugin image is encountered, it create a new plugin instance via the
factory.

IPlugin* createPlugin(...) override

{

mPlugin = std::make unique<FCPlugin>(serialData, seriallength);
return mPlugin.get() ;

}

In the same order as in the serialization, the variables are read and their values restored.
In addition, at this point the weights have been converted to selected format and can be
stored directly on the device.

FCPlugin(const void* data, size_t length)
{

const char* d = static_cast<const char*>(data), *a = d;
read (d, mNbInputChannels) ;

deserializeToDevice (d, mDeviceKernel,
mKernelWeights.count*type2size (mDataType)) ;
deserializeToDevice (d, mDeviceBias,
mBiasWeights.count*type2size (mDataType)) ;
assert(d == a + length);

4.8.5. Resource Management And Execution

Before a Custom layer is executed, the plugin is initialized. This is where resources are
held for the lifetime of the plugin and can be acquired and initialized. In this example,
weights are kept in CPU memory at first, so that during the build phase, for each
configuration tested, weights can be converted to the desired format and then copied

to the device in the initialization of the plugin. The method initialize creates the
required cuBLAS and cuDNN handles, sets up tensor descriptors, allocates device
memory, and copies the weights to device memory. Conversely, terminate destroys the
handles and frees the memory allocated on the device.

int initialize () override

{
CHECK (cudnnCreate (&mCudnn)) ;

CHECK (cublasCreate (&mCublas)) ;

if (mKernelWeights.values != nullptr)
convertAndCopyToDevice (mDeviceKernel, mKernelWeights) ;

}

The core of the plugin is enqueue, which is used to execute the custom layer at runtime.
The call parameters include the actual batch size, inputs, and outputs. The handles for
cuBLAS and cuDNN operations are placed on the given stream; then, according to the
data type and format configured, the plugin executes in single or half precision.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 62

Samples

virtual int enqueue (int batchSize, const void*const * inputs, wvoid**
outputs, ...) override

{

cublasSetStream (mCublas, stream);
cudnnSetStream (mCudnn, stream);
if (mDataType == DataType: :kFLOAT)
{...}

else
{

CHECK (cublasHgemm (mCublas, CUBLAS OP T, CUBLAS OP N,
mNbOutputChannels, batchSize,
mNbInputChannels, &oneh,
mDeviceKernel) , mNbInputChannels,
inputs[0] , mNbInputChannels, &zeroh,
outputs[0] , mNbOutputChannels)) ;

}
if (mBiasWeights.count)

{
cudnnDataType_t cudnnDT = mDataType == DataType::kFLOAT ?
CUDNN_DATA_FLOAT : CUDNN_DATA_ HALF;

}

return 0;

4.9. sampleNMT

What Does This Sample Do?

sampleNMT is a highly modular sample for inferencing using C++ and TensorRT API
so that you can consider using it as a reference point in your projects. Neural Machine
Translation (NMT) using sequence to sequence (seq2seq) models has garnered a lot of
attention and is used in various NMT frameworks.

The sampleNMT sample demonstrates how to:

» Create an attention based seq2seq type NMT inference engine using a checkpoint
from TensorFlow

» Convert trained weights using Python and import trained weights data into
TensorRT
» Build relevant engines and run inference using the generated TensorRT network
» Use layers, such as:
RNNv2
The RNNv2 layer is used in the 1stm_encoder.cpp and 1stm _decoder. cpp
files.
Constant
The Constant layer is used in the slp_attention.cpp, slp_embedder . cpp and
slp_projection.cpp files.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 63

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

MatrixMultiply
The MatrixMultiply layer is used in the context. cpp,
multiplicative_alignment.cpp, slp_attention.cpp, and
slp_projection.cpp files.
Shuffle
The Shuffle layer is used in the 1stm_encoder.cpp and 1stm_decoder.cpp
files.
RaggedSoftmax
The RaggedSoftmax layer is used in the context. cpp file.
TopK
The TopK layer is used in the softmax_likelihood. cpp file.
Gather
The Gather layer is used in the s1p_embedder. cpp file.

Where Is This Sample Located?

The sampleNMT sample is installed in the tensorrt/samples/sampleNMT directory.
For more information about how to run the sample, see the README . txt file in the
samples/sampleNMT/ directory.

4.9.1. Overview

At a high level, the basic architecture of the NMT model consists of two sides: an
encoder and a decoder. Incoming sentences are translated into sequences of words in a
fixed vocabulary. The incoming sequence goes through the encoder and is transformed
by a network of Recurrent Neural Network (RNN) layers into an internal state space that
represents a language-independent "meaning" of the sentence. The decoder works the
opposite way, transforming from the internal state space back into a sequence of words
in the output vocabulary.

Encoding And Embedding

The encoding process requires a fixed vocabulary of words from the source language.
Words not appearing in the vocabulary are replaced with an UNKNOWN token. Special
symbols also represent START-OF-SENTENCE and END-OF-SENTENCE. After the input is
finished, a START-OF-SENTENCE is fed in to mark the switch to decoding. The decoder
will then produce the END-OF-SENTENCE symbol to indicate it is finished translating.

Vocabulary words are not just represented as single numbers, they are encoded as word
vectors of a fixed size. The mapping from vocabulary word to embedding vector is
learned during training.

Attention

Attention mechanisms sit between the encoder and decoder and allow the network to
focus on one part of the translation task at a time. It is possible to directly connect the

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 64

Samples

encoding and decoding stages but this would mean the internal state representing the
meaning of the sentence would have to cover sentences of all possible lengths at once.

This sample implements Luong attention. In this model, at each decoder step the target
hidden state is combined with all source states using the attention weights. A scoring
function weighs each contribution from the source states. The attention vector is then fed
into the next decoder stage as an input.

Beam Search And Projection

There are several ways to organize the decode stage. The output of the RNN layer is not
a single word. The simplest method, is to choose the most likely word at each time step,
assume that is the correct output, and continue until the decoder generates the END-OF-
SENTENCE symbol.

A better way to perform the decoding is to keep track of multiple candidate possibilities
in parallel and keep updating the possibilities with the most likely sequences. In
practice, a small fixed size of candidates works well. This method is called beam

search. The beam width is the number of simultaneous candidate sequences that are in
consideration at each time step.

As part of beam search we need a mechanism to convert output states into probability
vectors over the vocabulary. This is accomplished with the projection layer using a fixed
dense matrix.

For more information related to SampleNMT, see Creating A Network Definition In C++,
Working With Deep Learning Frameworks, and Enabling FP16 Inference Using C++.

4.9.2. Preparing The Data

The NMT sample can be run with pre-trained weights. Link to the weights in the correct
format can be found in the samples/sampleNMT/README . txt file.

Running the sample also requires text and vocabulary data. For the De-En model, the
data can be fetched and processed using the script: wmt16_en_de.sh. Running this script
may take some time, since it prepares 4.5M samples for training as well as inference.

Run the script wmt16_de_en.sh and collect the following files into a directory:

» newstest2015.tok.bpe.32000.de
newstest2015. tok.bpe.32000.en
vocab.bpe.32000.de
vocab.bpe.32000.en

v v VY

The weights .bin files from the link in the README . txt should be put in a subdirectory
named weights in this directory.

In the event that the data files change, as of March 26, 2018 the MD5SUM for the data
files are:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 65

https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh

Samples

3c0a6e29d67b081a961febc6e9f53ed4c newstest2015.tok.bpe.32000.de
875215£2951b21a5140e4£3734b47d6c newstest2015.tok.bpe.32000.en
c1d0ca6d4994c75574£28d£f7c9e8253f vocab.bpe.32000.de

c1d0ca6d4994c75574£28df7c9%9e8253f vocab.bpe.32000.en

4.9.3. Running The Sample

The sample executable is located in the tensorrt/bin directory. Running the sample
requires pre-trained weights and the data files mentioned in Preparing The Data. After
the data directory is setup, pass the location of the data directory to the sample with the
following option:

--data_dir=<path to_data_directory>

To generate example translation output, issue:

sample nmt --data_dir=<path> --data_writer=text

The example translations can then be found in the translation_output. txt file.

To get the BLEU score for the first 100 sentences, issue:

sample nmt --data_dir=<path> --max_inference_samples=100

The following options are available when running the sample:
--help

Output help message and exit.
--data_writer=bleu/text/benchmark

Type of the output the app generates (default =bleu).
--output_file=<path to file>

Path to the output file when data_writer=text.
--batch=<N>

Batch size (default = 128).
--beam=<N>

Beam width (default = 5).
--max_input sequence_length=<N>

Maximum length for input sequences (default = 150).
--max_output_sequence_length=<N>

Maximum length for output sequences (default = -1), negative value indicates no

limit.
--max_inference_ samples=<N>

Maximum sample count to run inference for, negative values indicates no limit is set

(default = -1).
--verbose

Output information level messages by TensorRT.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 66

Samples

--max_workspace_ size=<N>
Maximum workspace size (default = 268435456).
--data_dir=<path_to_data directory>
Path to the directory where data and weights are located (default=../../../../
data/samples/nmt/deen).
--profile
Profile TensorRT execution layer by layer. Use benchmark data_writer when
profiling on, disregard benchmark results.
--aggregate_profile
Merge profiles from multiple TensorRT engines.
--fplé6
Switch on FP16 math.

4.9.4. Training The Model

Training the NMT model can be done in TensorFlow. This sample was trained following
the general outline of the TensorFlow Neural Machine Translation Tutorial. The first step
is to obtain training data, which is handled by the steps in Preparing The Data.

The next step is to fetch the TensorFlow NMT framework, for example:

git clone https://github.com/tensorflow/nmt.git

The model description is located in the nmt/nmt/standard hparams/wmtl6.json
file. This file encodes values for all the hyperparameters available for NMT models.
Not all variations are supported by the current NMT sample code so this file should be
edited with appropriate values. For example, only unidirectional LSTMs and the Luong
attention model are supported. The exact parameters used for the pre-trained weights
are available in the sample README . txt file.

After the model description is ready and the training data is available in the <path>/
wmtl6_de_en directory, the command to train the model is:

python -m nmt.nmt \
--src=de --tgt=en \
--hparams _path=<path to_json config>/wmtlé6.json \
--out_dir=/tmp/deen nmt \
——vocab_pref1x-<path>/wmt16 de_en/vocab.bpe.32000 \
--train_prefix=<path>/wmtl6_de en/traln tok.clean.bpe.32000 \

--dev_prefix=<path>/wmtl6 de en/newstest2013 tok.bpe.32000 \
--test_prefix=<path>/wmtl6_ de _en/newstest2015. tok.bpe.32000

4.9.5. Importing Weights From A Checkpoint

Training the model generates various output files describing the state of the model. In
order to use the model with TensorRT, model weights must be loaded into the TensorRT
network. The weight values themselves are included in the TensorFlow checkpoint
produced during training. In the sample directory, we provide a Python script that
extracts the weights from a TensorFlow checkpoint into a set of binary weight files that
can be directly loaded by the sample.

To use the script, run the command:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 67

https://github.com/tensorflow/nmt

Samples

python ./chpt to _bin.py \

--src=de --tgt=en \
--ckpt=/tmp/deen_nmt/translate.ckpt-340000 \
--hparams _path=<path to_json config>/wmtlé.json \
--out_dir=/tmp/deen \
--vocab_prefix=<path>/wmtl6_de en/vocab.bpe.32000 \
--inference_ input file=\

<path>/wmtl6_de en/newstest2015.tok.bpe.32000.de \
--inference output file=/tmp/deen/output_infer \
--inference ref file=\

<path>/wmtl6_de en/newstest2015.tok.bpe.32000.en

This generates 7 binary weight files for all the pieces of the model. The binary format is
just a raw dump of the floating point values in order, followed by a metadata. The script
was tested against TensorFlow 1.6.

4.10. sampleFasterRCNN

What Does This Sample Do?
The sampleFasterRCNN sample demonstrates how to:

» Use the Faster R-CNN plugin which allows for end-to-end inferencing
» Implement the Faster R-CNN network in TensorRT

» Perform a quick performance test in TensorRT

» Implement a fused custom layer

» Construct the basis for further optimization, for example using INT8 calibration,
user trained network, etc.

Where Is This Sample Located?
The sampleFasterRCNN sample is installed in the /usr/src/tensorrt/samples/
sampleFasterRNN directory.

The Faster R-CNN Caffe model is too large to include in the product bundle. To run
this sample, download the model using the instructions in the README . txt in the
sample directory. The README is located in the <TensorRT directory>/samples/
sampleFasterRCNN directory.

Notes About This Sample:
The original Caffe model has been modified to include the Faster R-CNN’s RPN and
ROIPooling layers.

4.10.1. Overview

The sampleFasterRCNN is a more complex sample. The Faster R-CNN network is based
on the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 68

https://github.com/tensorflow/tensorflow/releases/tag/v1.6.0
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497

Samples

Faster R-CNN is a fusion of Fast R-CNN and RPN (Region Proposal Network). The
latter is a fully convolutional network that simultaneously predicts object bounds and
objectness scores at each position. It can be merged with Fast R-CNN into a single
network because it is trained end-to-end along with the Fast R-CNN detection network
and thus shares with it the full-image convolutional features, enabling nearly cost-free
region proposals. These region proposals will then be used by Fast R-CNN for detection.

The sampleFasterRCNN sample uses a plugin from the TensorRT plugin library to
include a fused implementation of Faster R-CNN’s Region Proposal Network (RPN) and
ROIPooling layers. These particular layers are from the Faster R-CNN paper and are
implemented together as a single plugin called the FasterRCNNPlugin.

Faster R-CNN is faster and more accurate than its predecessors (RCNN, Fast R-CNN)
because it allows for an end-to-end inferencing and does not need standalone region

proposal algorithms (like selective search in Fast R-CNN) or classification method (like
SVM in RCNN).

4.10.2. Preprocessing The Input

The input to the Faster R-CNN network is 3 channel 375x500 images.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel.

However, the authors of SSD have trained the network such that the first Convolution
layer sees the image data in B, G, and R order. Therefore, we reverse the channel order
when the PPM images are being put into the network buffer.

float* data = new float[N*INPUT C*INPUT H*INPUT W] ;
// pixel mean used by the Faster R-CNN's author
float pixelMean[3]{ 102.9801f, 115.9465f, 122.7717f }; // also in BGR order
for (int i = 0, volImg = INPUT_C*INPUT_H*INPUT_W; i < N; ++i)
{

for (int ¢ = 0; c < INPUT_C; ++c)

{

// the color image to input should be in BGR order

for (unsigned j = 0, volChl INPUT H*INPUT W; j < volChl; ++j)
data[i*volImg + c*volChl + j] float (ppms[i] .buffer[j*INPUT C + 2 - c]) -
pixelMean|c];

}
}

There is a simple PPM reading function called readPPMFile.

The readPPMFile function will not work correctly if the header of the PPM image
contains any annotations starting with #.

Furthermore, within the sample, there is another function called
writePPMFileWithBBox, that plots a given bounding box in the image with one-pixel
width red lines.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 69

Samples

In order to obtain PPM images, you can easily use the command-line tools such as
ImageMagick to perform the resizing and conversion from JPEG images.

If you choose to use off-the-shelf image processing libraries to preprocess the inputs,
ensure that the TensorRT inference engine sees the input data in the form that it is
supposed to.

4.10.3. Defining The Network

The network is defined in a prototxt file which is shipped with the sample and located in
the data/faster-rcnn directory. The prototxt file is very similar to the one used by the
inventors of Faster R-CNN except that the RPN and the ROI pooling layer is fused and
replaced by a custom layer named RPROIFused.

Similar to samplePlugin, in order to add Custom layers via NvCaffeParser, you need
to create a factory by implementing the nvcaffeParser: : IPluginFactory interface
and then pass an instance to ICaffeParser: :parse (). But unlike samplePlugin, in
which the FCP1lugin is defined in the sample, the RPROIFused plugin layer instance
can be created by the create function implemented in the TensorRT plugin library
createFasterRCNNPlugin. This function returns an instance that implements an
optimized RPROIFused Custom layer and performs the same logic designed by the
authors.

4.10.4. Building The Engine

For details on how to build the TensorRT engine, see Building An Engine In C++.

In the case of the Faster R-CNN sample, maxWorkspaceSize is set to 10 * (2220),
namely 10MB, because there is a need of roughly 6MB of scratch space for the plugin
layer for batch size 5.

After the engine is built, the next steps are to serialize the engine, then run the inference
with the deserialized engine. For more information, see Serializing A Model In C++.

4.10.5. Running The Engine

To deserialize the engine, see Performing Inference In C++.

In sampleFasterRCNN, there are two inputs:
data
data is the image input
im info
im_info is the image information array which contains the number of rows,
columns, and the scale for each image in a batch.
and four outputs:
bbox pred
bbox_pred is the predicted offsets to the heights, widths and center coordinates.
cls prob
cls_prob is the probability associated with each object class of every bounding box.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 70

Samples

rois

rois is the height, width, and the center coordinates for each bounding box.
count

count is deprecated and can be ignored.

The count output was used to specify the number of resulting NMS bounding
boxes if the output is not alighed to nmsMaxOut. Although it is deprecated, always
allocate the engine buffer of size batchSize * sizeof (int) for it until it is
completely removed from the future version of TensorRT.

4.10.6. Verifying The Output

The outputs of the Faster R-CNN network need to be post-processed in order to obtain
human interpretable results.

First, because the bounding boxes are now represented by the offsets to the center,
height, and width, they need to be unscaled back to the raw image space by dividing the
scale defined in the imInfo (image info).

Ensure you apply the inverse transformation on the bounding boxes and clip the
resulting coordinates so that they do not go beyond the image boundaries.

Lastly, overlapped predictions have to be removed by the non-maximum suppression
algorithm. The post-processing codes are defined within the CPU because they are
neither compute intensive nor memory intensive.

After all of the above work, the bounding boxes are available in terms of the class
number, the confidence score (probability), and four coordinates. They are drawn in the
output PPM images using the writePPMFileWithBBox function.

4.11. sampleUffSSD

What Does This Sample Do?
The sampleUffSSD sample demonstrates how to:

» Preprocess the TensorFlow SSD network
» Perform inference on the SSD network in TensorRT
» Use TensorRT plugins to speed up inference

Where Is This Sample Located?
The sampleUffSSD sample is installed in the tensorrt/samples/sampleU££SSD
directory.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 71

Samples

Notes About This Sample:

The frozen graph for the SSD network is too large to include in the TensorRT package.
Ensure you read the instructions in the README located at tensorrt/samples/
sampleUf£SSD for details on how to generate the network to run inference.

4.11.1. APl Overview

The sampleUffSSD is based on the following paper, SSD: Single Shot MultiBox Detector.
The SSD network, built on the VGG-16 network, performs the task of object detection
and localization in a single forward pass of the network. This approach discretizes the
output space of bounding boxes into a set of default boxes over different aspect ratios
and scales per feature map location. At prediction time, the network generates scores
for the presence of each object category in each default box and produces adjustments to
the box to better match the object shape. Additionally, the network combines predictions
from multiple features with different resolutions to naturally handle objects of various
sizes.

The sampleUffSSD is based on the TensorFlow implementation of SSD. For more
information, see ssd_inception_v2_coco.

Unlike the paper, the TensorFlow SSD network was trained on the InceptionV2
architecture using the MSCOCO dataset which has 91 classes (including the background
class). The configuration details of the network can be found at GitHub: TensorFlow
models.

The main components of this network are the Preprocessor, FeatureExtractor,

BoxPredictor, Grid AnchorGenerator and Postprocessor.

Preprocessor
The preprocessor step of the graph is responsible for resizing the image. The image is
resized to a 300x300x3 size tensor. The preprocessor step also performs normalization
of the image so all pixel values lie between the range [-1, 1].

FeatureExtractor
The FeatureExtractor portion of the graph runs the InceptionV2 network on the
preprocessed image. The feature maps generated are used by the anchor generation
step to generate default bounding boxes for each feature map.

In this network, the size of feature maps that are used for anchor generation are
[(19x19), (10x10), (5x5), (3x3), (2x2), (1x1)].

BoxPredictor
The BoxPredictor step takes in a high level feature map as input and produces a list of
box encodings (x-y coordinates) and a list of class scores for each of these encodings
per feature map. This information is passed to the postprocessor.
GridAnchorGenerator
The goal of this step is to generate a set of default bounding boxes (given the
scale and aspect ratios mentioned in the config) for each feature map cell. This is
implemented as a plugin layer in TensorRT called the gridAnchorGenerator
plugin.
Postprocessor
The postprocessor step performs the final steps to generate the network output.
The bounding box data and confidence scores for all feature maps are fed to

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 72

https://arxiv.org/abs/1512.02325
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config

Samples

the step along with the pre-computed default bounding boxes (generated in the
GridAnchorGenerator namespace). It then performs NMS (non-maximum
suppression) which prunes away most of the bounding boxes based on a confidence
threshold and IoU (Intersection over Union) overlap, thus storing only the top

N boxes per class. This is implemented as a plugin layer in TensorRT called
detectionOutput plugin.

This sample also implements another plugin called FlattenConcat which is used
to flatten each input and then concatenate the results. This is applied to the
location and confidence data before it is fed to the post processor step since the
detectionOutput plugin requires the data to be in this format.

4.11.2. Processing The Input Graph

The TensorFlow SSD graph has some operations that are currently not supported in
TensorRT. Using a preprocessor on the graph, we can combine multiple operations in
the graph into a single custom operation which can be implemented as a plugin layer
in TensorRT. Currently, the preprocessor provides the ability to stitch all nodes within a
namespace into one custom node.

To use the preprocessor, the convert-to-uff utility should be called with a -p flag
and a config file. The config script should also include attributes for all custom plugins
which will be embedded in the generated .u£f file. Current example scripts for SSD is
located in /usr/src/tensorrt/samples/sampleUf£SSD/config.py.

Using the preprocessor on the graph, we were able to remove the preprocessor
namespace from the graph, stitch the GridAnchorGenerator namespace to create
the GridAnchorGenerator plugin, stitch the postprocessor namespace to the
detectionOutput plugin and mark the concat operations in the BoxPredictor as
FlattenConcat plugins.

The TensorFlow graph has some operations like Assert and Identity which can be
removed for the inferencing. Operations like Assert are removed and leftover nodes
(with no outputs once assert is deleted) are then recursively removed.

Identity operations are deleted and the input is forwarded to all the connected outputs.
TensorRT does not currently support Relu6 (x) operation, so the preprocessor also
replaces this operation with a Relu(x) - Relu(x-6).

Additional documentation on the graph preprocessor can be found in the TensorRT API.

4.11.3. Preparing The Data

The generated network has an input node called Input and the output node is given
the name MarkOutput_0 by the UFF converter. These nodes are registered by the UFF
Parser in the sample.

parser->registerInput ("Input", DimsCHW(3, 300, 300), UffInputOrder: :kNCHW) ;
parser->registerOutput ("MarkOutput 0") ;

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 73

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/graphsurgeon/graphsurgeon.html

Samples

The input to the SSD network in this sample is 3 channel 300x300 images. In the sample,
we normalize the image so the pixel values lie in the range [-1,1]. This is equivalent to
the preprocessing stage of the network.

Since TensorRT does not depend on any computer vision libraries, the images are
represented in binary R, G, and B values for each pixels. The format is Portable PixMap
(PPM), which is a netpbm color image format. In this format, the R, G, and B values for
each pixel are represented by a byte of integer (0-255) and they are stored together, pixel
by pixel. There is a simple PPM reading function called readPPMFile.

4.11.4. Defining The Network And Plugins

Details about how to create TensorRT plugins can be found in Extending TensorRT With
Custom Layers.

The pluginFactory object created needs to be passed to an instance of

IUffParser: :parse () which will invoke the createPlugin () function for each

Custom layer. Details about some of the plugin layers implemented for SSD in TensorRT

are given below.

GridAnchorGeneration Plugin
This plugin layer implements the grid anchor generation step in the TensorFlow SSD
network. For each feature map we calculate the bounding boxes for each grid cell. In
this network, there are 6 feature maps and the number of boxes per grid cell are as
follows:

19x19] feature map: 3 boxes (19x19x3x4(co-ordinates/box))
10x10] feature map: 6 boxes (10x10x6x4)

5x5] feature map: 6 boxes (5x5x6x4)

3x3] feature map: 6 boxes (3x3x6x4)

2x2] feature map: 6 boxes (2x2x6x4)

1x1] feature map: 6 boxes (1x1x6x4)

vV Vv v v v
—_——— — —

DetectionOutput Plugin
The detectionOutput plugin generates the detection output based on location and
confidence predictions generated by the BoxPredictor. This layer has three input
tensors corresponding to location data (LocData), confidence data (confData) and
priorbox data (priorData).

The inputs to detection output plugin have to be flattened and concatenated across
all the feature maps. We use the FlattenConcat plugin implemented in the sample
to achieve this. The location data generated from the box predictor has the following
dimensions:

19x19x12 -> Reshape -> 1083x4 -> Flatten -> 4332x1
10x10x24 -> Reshape -> 600x4 -> Flatten -> 2400x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for locData input are of the order of
7668x1.

The confidence data generated from the box predictor has the following dimensions:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 74

Samples

19x19%x273 -> Reshape -> 1083x91 -> Flatten -> 98553x1
10x10x546 -> Reshape -> 600x91 -> Flatten -> 54600x1

and so on for the remaining feature maps.

After concatenating, the input dimensions for confData input are of the order of
174447x1.

The prior data generated from the grid anchor generator plugin has the following
dimensions, for example 19x19 feature map > 2x4332x1 (there are two channels here
because one channel is used to store variance of each coordinate that is used in the
NMS step). After concatenating, the input dimensions for priorData input are of the
order of 2x7668x1.

struct DetectionOutputParameters

{

bool sharelocation, varianceEncodedInTarget;

int backgroundlLabellId, numClasses, topK, keepTopK;

float confidenceThreshold, nmsThreshold;

CodeTypeSSD codeType;

int inputOrder[3];

bool confSigmoid;

bool isNormalized;
}i
sharelLocation and varianceEncodedInTarget are used for the Caffe
implementation, so for the TensorFlow network they should be set to true and
false respectively. The confSigmoid and isNormalized parameters are necessary
for the TensorFlow implementation. If confSigmoid is set to true, it calculates the
sigmoid values of all the confidence scores. The TensorFlow bounding box data is not

normalized so the isNormalized flag specifies if the data is normalized.

4.11.5. Verifying The Output

After the builder is created (see Building An Engine In C++) and the engine is serialized
(see Serializing A Model In C++), we can perform inference. Steps for deserialization and
running inference are outlined in Performing Inference In C++.

The outputs of the SSD network are human interpretable. The post-processing work,
such as the final NMS, is done in the detectionOutput layer. The results are organized
as tuples of 7. In each tuple, the 7 elements are respectively image ID, object label,
confidence score, (x,y) coordinates of the lower left corner of the bounding box, and
(x,y) coordinates of the upper right corner of the bounding box. This information can
be drawn in the output PPM image using the writePPMFileWithBBox function. The
visualizeThreshold parameter can be used to control the visualization of objects in
the image. It is currently set to 0.5 so the output will display all objects with confidence
score of 50% and above.

4.12. sampleMovielLens

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 75

Samples

What Does This Sample Do?

The sampleMovieLens sample demonstrates a simple movie recommender system
using Neural Collaborative Filter (NCF). The network is trained in TensorFlow on the
MovieLens dataset containing 6040 users and 3706 movies. For more information about
the recommender system network, see Neural Collaborative Filtering.

Where Is This Sample Located?
The sampleMovieLens sample in installed in the usr/src/tensorrt/samples/
sampleMovieLens directory.

Notes About This Sample:

Each query to the network consists of a userID and list of MovieIDs. The network
predicts the highest-rated movie for each user. As trained parameters, the network
has embeddings for users and movies, and weights for a sequence of Multi-Layer
Perceptrons (MLPs).

The sample can be built with Multi Process Service (MPS) mode enabled, and can use a
configurable number of processes once MPS mode is enabled.

4.12.1. Importing Network To TensorRT

The network is converted from TensorFlow using the UFF converter (see Converting A
Frozen Graph To UFF), and imported using the UFF parser. Constant layers are used to
represent the trained parameters within the network, and the MLPs are implemented
using FullyConnected layers. A TopK operation is added manually after parsing to find
the highest rated movie for the given user.

4.12.2. Running With MPS

MPS (Multi-Process Service) allows multiple CUDA processes to share single GPU
context. With MPS, multiple overlapping kernel execution and memcpy operations from
different processes can be scheduled concurrently to achieve maximum utilization. This
can be especially effective in increasing parallelism for small networks with low resource
utilization such as those primarily consisting of a series of small MLPs. For more
information about MPS, see Multi-Process Service documentation or in the README . txt
file for the sample.

MPS requires a server process. To start the process:
export CUDA VISIBLE DEVICES=<GPU_ID>
nvidia-smi -i <GPU_ID> -c EXCLUSIVE_ PROCESS

nvidia-cuda-mps-control -d

In order to run the sample with MPS, recompile with USE_MPS=1.

4.12.3. Verifying The Output

The output of the MLP based NCF network is in human readable format. The final
output is movieID with probability rating for give userID.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 76

https://grouplens.org/datasets/movielens/
https://docs.nvidia.com/deploy/mps/index.html

Samples

4.13. lite_examples

What Does This Example Do?
The lite_examples example outlines various workflows using the TensorRT Lite API. It
demonstrates how to:

» Build a TensorRT engine from a Caffe model using the Lite API
» Load a TensorRT engine from a plan file using the Lite API
» Build a TensorRT engine from a TensorFlow model using the Lite API

Where Is This Example Located?
The lite_examples example is installed in the { PYTHON PACKAGE_DIR}/tensorrt/
examples/lite_examples directory.

Notes About This Example:
Each of the included examples uses a LeNet5 model trained on the MNIST handwritten
digits dataset. To verify accuracy, each example tests the engine against 10 test cases.

For more information on using the TensorRT Lite API see Working With The TensorRT
Lite Engine.

4.14. pytorch_to_trt

What Does This Example Do?
In order to use a PyTorch model with TensorRT, the model architecture must be
recreated using the TensorRT API. The pytorch_to_trt example demonstrates how to:

» Working With PyTorch And Other Frameworks
» Creating A Network Using The Python API
» Building An Engine In Python and Performing Inference In Python

Where Is This Example Located?
The pytorch_to_trt example is installed in the { PYTHON PACKAGE_DIR}/tensorrt/
examples/pytorch to_trt directory.

Notes About This Example:
The example uses a PyTorch model and trains it on the MNIST handwritten digits
dataset. To verify accuracy, it tests the engine against 10 test cases.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 77

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#python
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Samples

4.15. resnet_as_a_service

What Does This Example Do?
The resnet_as_a_service example demonstrates how to:

» Build an engine from a TensorFlow model using the TensorRT Lite API
» Deploy the engine as part of a RESTful service using Flask

Where Is This Example Located?
The resnet_as_a_service example is installed in the { PYTHON PACKAGE_DIR}/
tensorrt/examples/resnet_as_a_service directory.

Notes About This Example:
This example uses a ResNet-50 model.

4.16. sample_onnx

What Does This Example Do?
The sample_onnx example demonstrates how to:

» Convert a model in ONNX format to a TensorRT engine
» Importing From ONNX Using Python and run inference

Where Is This Example Located?
The sample_onnx example is installed in the { PYTHON PACKAGE DIR}/tensorrt/
examples/sample_ onnx directory.

Notes About This Example:
The example offers a variety of command-line options to modify various aspects of the
engine. You can view a full list of options by passing the -h flag to the sample.

4.17. tf_to_trt

What Does This Example Do?
The tf_to_trt example demonstrates the TensorFlow to TensorRT workflow after the
model has been frozen to a protobuf. Specifically, it highlights how to:

» Training a network in TensorFlow
» Converting A Frozen Graph To UFF

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 78

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html#python

Samples

» Importing From TensorFlow Using Python and Performing Inference In Python

Where Is This Example Located?
The tf_to_trt example is installed in the { PYTHON PACKAGE DIR}/tensorrt/

examples/tf to_trt directory.

Notes About This Example:
This example uses a LeNet5 model trained on the MNIST handwritten digits dataset. To

verify accuracy, it tests the engine against 10 test cases.

www.nvidia.com

TensorRT 4.0.1 DU-08602-001_v4.0.1 | 79

Chapter 5.
TROUBLESHOOTING

The following sections help answer the most commonly asked questions regarding
typical use cases.

5.1. FAQs

Q: How do you create an engine that is optimized for several different batch sizes?
A: While TensorRT allows an engine optimized for a given batch size to run at any
smaller size, the performance for those smaller sizes may not be as well-optimized. To
optimize for multiple different batch sizes, run the builder and serialize an engine for
each batch size.

Q: How do you choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilder: : setMaxWorkspaceSize () controls the maximum amount of workspace
that may be allocated, and will prevent algorithms that require more workspace from
being considered by the builder. At runtime, the space is allocated automatically

when creating an IExecutionContext. The amount allocated will be no more than

is required, even if the amount set in IBuilder: : setMaxWorkspaceSize () is much
higher. Applications should therefore allow the TensorRT builder as much workspace as
they can afford; at runtime TensorRT will allocate no more than this, and typically less.

Q: How do you use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either
by the builder or on deserialization. To select the GPU, use cudaSetDevice () before
calling the builder or deserializing the engine. Each IExecutionContext is bound
to the same GPU as the engine from which it was created. When calling execute ()
or enqueue (), ensure that the thread is associated with the correct device by calling
cudaSetDevice () if necessary.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 80

Troubleshooting

Q: How do | get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt version # # # # which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the example below:

$ nm -D libnvinfer.so.4.1.0 | grep tensorrt version
000000000c18£78c B tensorrt version_4 0 0 _7

Q: How do | determine how much device memory will be required by my network?
A: TensorRT uses device memory for two purposes: to hold the weights required

by the network, and to hold the intermediate activations. The size of the weights

can be closely approximated by the size of the serialized engine (in fact this

will be a slight overestimate, as the serialized engine also includes the network
definition). The size of the activation memory required can be determined by calling
ICudaEngine: :getDeviceMemorySize (). The sum of these will be the amount of
device memory TensorRT allocates.

The CUDA infrastructure and device code also consume device memory. The amount
of memory will vary by platform, device, and TensorRT version. Use cudaGetMemInfo
to determine the total amount of device memory in use.

5.2. Support

To ask questions and get involved in discussions in all things related to TensorRT, access
the NVIDIA DevTalk TensorRT forum at https://devtalk.nvidia.com/default/board/304/
tensorrt/.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 81

https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/

Appendix A.
APPENDIX

A.1. TensorRT Layers

TensorRT directly supports the following layer types:

Activation
The Activation layer implements per-element activation functions. Supported
activation types are rectified linear unit (ReLU) , hyperbolic tangent (tanh), and "s"
shaped curve (sigmoid).

Concatenation
The Concatenation layer links together multiple tensors of the same height and width
across the channel dimension.

Constant
The Constant layer emits a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.

Convolution
The Convolution layer computes a 3D (channel, height, and width) convolution, with
or without bias.

Deconvolution
The Deconvolution layer implements a deconvolution, with or without bias.

ElementWise
The ElementWise layer, also known as the Eltwise layer, implements per-element
operations. Supported operations are sum, product, maximum, subtraction,
division and power.

Flatten
The Flatten layer flattens the input while maintaining the batch_size. Assumes that
the first dimension represents the batch. The Flatten layer can only be placed in front
of the FullyConnected layer.

FullyConnected
The FullyConnected layer implements a matrix-vector product, with or without bias.

Gather
The Gather layer implements the gather operation, which takes a data tensor, an
indices tensor, and a data tensor axis as input and reindexes the data tensor along the

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 82

Appendix

given axis using the indices tensor. Currently, only the TensorRT C++ API supports
this layer.

LRN
The LRN layer implements cross-channel Local Response Normalization.

MatrixMultiply
The MatrixMultiply layer implements matrix multiplication for a collection of
matrices. A matrix can be transposed or non-transposed before matrix multiplication.
Broadcasting is performed, when valid, on unmatched dimensions.

Padding
The Padding layer implements spatial zero-padding of tensors. Padding can be
different on each axis, asymmetric, and either positive (resulting in expansion of the
tensor) or negative (resulting in trimming).

Plugin
The Plugin Layer allows you to integrate Custom layer implementations that
TensorRT does not natively support.

Pooling
The Pooling layer implements pooling within a channel. Supported pooling types are
maximum and average.

Ragged SoftMax
The Ragged SoftMax layer implements cross-channel Softmax for an input tensor
containing sequences of variable lengths. The sequence lengths are specified using a
second tensor input to the layer.

Reduce
The Reduce layer implements dimension reduction of tensors using reduce operators.
Supported reduce operators are prod, max, min, and avg. Currently, only the
TensorRT C++ API supports this layer.

RNN
This layer type is deprecated in favor of RNNv2, however, it is still available for
backwards compatibility.

RNNv2
The RNNv2 layer implements recurrent layers such as Recurrent Neural Network
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM).
Supported types are RNN, GRU, and LSTM.

Scale
The Scale layer implements a per-tensor, per channel or per-weight affine
transformation and/or exponentiation by constant values.

Shuffle
The Shuffle layer implements reshuffling of tensors. It can be used to reshape or
transpose data.

SoftMax
The SoftMax layer implements a cross-channel SoftMax.

Squeeze
The Squeeze layer removes dimensions of size 1 from the shape of a tensor. The
Squeeze layer only implements the binary squeeze (removing specific size 1
dimensions). The batch dimension cannot be removed.

TopK
The TopK layer finds the top K elements along a dimension, returning a reduced
tensor and a tensor of index positions.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 83

Appendix

Unary
The Unary layer supports pointwise unary operations. Supported operations are exp,
log, sqrt, recip, abs and neg.

» Batch Normalization can be implemented using the TensorRT Scale layer.

» The operation the Convolution layer performs is actually a correlation. Therefore,
it is a consideration if you are formatting weights to import via TensorRT API,
rather than via the NVCaffe" parser library.

For more information about TensorRT layers, see the TensorRT API.

A.2. Command Line Wrapper

Included in the samples directory is a command line wrapper, called trtexec, for
TensorRT. It is useful for benchmarking networks on random data and for generating
serialized engines from such models.

The command line arguments are as follows:

Mandatory params:

--deploy=<file> Caffe deploy file
OR --uff=<file> UFF file
--output=<name> Output blob name (can be specified

multiple times)

Mandatory params for onnx:
——onnx=<file> ONNX Model file

Optional params:
-—-uffInput=<name>,C,H,W Input blob names along with their
dimensions for UFF parser

—-—-model=<file> Caffe model file (default = no model,
random weights used)

--batch=N Set batch size (default = 1)

-—-device=N Set cuda device to N (default = 0)
-—iterations=N Run N iterations (default = 10)
-—-avgRuns=N Set avgRuns to N - perf is measured as an
average of avgRuns (default=10)

—--percentile=P For each iteration, report the percentile
time at P percentage (0<P<=100, default = 99.0%)

—--workspace=N Set workspace size in megabytes (default =
16)

-—-fplo Run in fpl6 mode (default = false).
Permits 16-bit kernels

==L At Run in int8 mode (default = false).
Currently no support for ONNX model.

—--verbose Use verbose logging (default = false)
--hostTime Measure host time rather than GPU time
(default = false)

--engine=<file> Generate a serialized TensorRT engine
-—calib=<file> Read INT8 calibration cache file.

Currently no support for ONNX model.

For example:

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 84

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Appendix

trtexec --deploy=mnist.prototxt --model=mnist.caffemodel --
output=prob

If no model is supplied, random weights are generated.

A.3. ACKNOWLEDGEMENTS

TensorRT uses elements from the following software, whose licenses are reproduced
below:

Google Protobuf
This license applies to all parts of Protocol Buffers except the following:

» Atomicops support for generic gcc, located in sre/google/protobuf/stubs/
atomicops_internals_generic_gcc.h. This file is copyrighted by Red Hat Inc.
» Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/

atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance
LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

» Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 85

Appendix

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control” means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 86

http://www.apache.org/licenses/

Appendix

copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form
of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 87

Appendix

that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
tile are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided

that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative
Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has been
advised of the possibility of such damages.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 88

Appendix

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

BVLC Caffe
COPYRIGHT
All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents) All rights
reserved.

All other contributions:
Copyright (c) 2014, 2015, the respective contributors All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and
copyright details. If a contributor wants to further mark their specific copyright on
a particular contribution, they should indicate their copyright solely in the commit
message of the change when it is committed.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 89

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Appendix

LICENSE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/Caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

half.h
The MIT License
Copyright (c) 2012-2013 Christian Rau

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 90

Appendix

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

jQuery.js

jQuery.js is generated automatically under doxygen. In all cases TensorRT uses the
functions under the MIT license.

www.nvidia.com
TensorRT 4.0.1 DU-08602-001_v4.0.1 | 91

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,
MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,
AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A
SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE
(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER
LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS
FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR
IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and
fit for the application planned by customer and to do the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect
the quality and reliability of the NVIDIA product and may result in additional or different conditions and/
or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any
default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information
in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DIGITS, DGX, DGX-1, Jetson, Kepler,
NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbIA®

	Table of Contents
	What Is TensorRT?
	1.1. Benefits Of TensorRT
	1.2. Where Does TensorRT Fit?
	1.3. How Does TensorRT Work?
	1.4. API Overview
	1.5. How Do I Get TensorRT?

	TensorRT Tasks
	2.1. Initializing TensorRT in C++
	2.2. Creating A Network Definition In C++
	2.2.1. Importing A Model Using A Parser In C++
	2.2.2. Importing A Caffe Model Using The C++ Parser API
	2.2.3. Importing A TensorFlow Model Using The C++ UFF Parser API
	2.2.4. Importing An ONNX Model Using The C++ Parser API

	2.3. Creating A Network Using The C++ API
	2.4. Building An Engine In C++
	2.5. Serializing A Model In C++
	2.6. Performing Inference In C++
	2.7. Memory Management In C++
	2.8. Initializing TensorRT in Python
	2.9. Creating A Network Definition In Python
	2.9.1. Importing A Model Using A Parser In Python
	2.9.2. Importing From Caffe Using Python
	2.9.3. Importing From TensorFlow Using Python
	2.9.4. Importing From ONNX Using Python
	2.9.5. Importing From PyTorch And Other Frameworks

	2.10. Creating A Network Using The Python API
	2.11. Building An Engine In Python
	2.12. Serializing A Model In Python
	2.13. Performing Inference In Python
	2.14. Extending TensorRT With Custom Layers
	2.14.1. Adding Custom Layers Using The C++ API
	2.14.2. Using Custom Layers When Importing A Model From A Framework

	2.15. Working With Mixed Precision
	2.15.1. Enabling FP16 Inference Using C++
	2.15.2. Enabling FP16 Inference Using Python
	2.15.3. Optimizing INT8 Calibration Using C++ API
	2.15.4. Optimizing INT8 Calibration Using Python

	2.16. Deploying A TensorRT Optimized Model
	2.16.1. Deploying In The Cloud
	2.16.2. Deploying To An Embedded System

	Working With Deep Learning Frameworks
	3.1. Supported Operations
	3.2. Working With TensorFlow
	3.2.1. Freezing A TensorFlow Graph
	3.2.2. Freezing A Keras Model
	3.2.3. Converting A Frozen Graph To UFF
	3.2.4. Working With TensorFlow RNN Weights
	3.2.4.1. TensorFlow RNN Cells Supported In TensorRT
	3.2.4.2. Maintaining Model Consistency Between TensorFlow And TensorRT
	3.2.4.3. Workflow
	3.2.4.4. Dumping The TensorFlow Weights
	3.2.4.5. Loading Dumped Weights
	3.2.4.6. Converting The Weights To A TensorRT Format
	3.2.4.6.1. TensorFlow Checkpoint Storage Format
	3.2.4.6.2. TensorFlow Kernel Tensor Storage Format
	3.2.4.6.3. Kernel Weights Conversion To A TensorRT Format
	3.2.4.6.4. TensorFlow Bias Weights Storage Format
	3.2.4.6.5. Bias Tensor Conversion To TensorRT Format

	3.2.4.7. BasicLSTMCell Example
	3.2.4.7.1. BasicLSTMCell Kernel Tensor
	3.2.4.7.2. BasicLSTMCell Bias Tensor

	3.2.4.8. Setting The Converted Weights And Biases

	3.3. Working With PyTorch And Other Frameworks
	3.4. Working With The TensorRT Lite Engine
	3.4.1. Running Inference
	3.4.2. Preprocessing And Postprocessing Function Tables

	Samples
	4.1. sampleMNIST
	4.2. sampleMNISTAPI
	4.3. sampleUffMNIST
	4.4. sampleOnnxMNIST
	4.4.1. Configuring The ONNX Parser
	4.4.2. Converting The ONNX Model To A TensorRT Network
	4.4.3. Building The Engine And Running Inference

	4.5. sampleGoogleNet
	4.5.1. Configuring The Builder
	4.5.2. Profiling

	4.6. sampleCharRNN
	4.6.1. Network Configuration
	4.6.1.1. RNNv2 Layer Setup
	4.6.1.2. RNNv2 Layer - Optional Inputs
	4.6.1.3. MatrixMultiply Layer Setup
	4.6.1.4. ElementWise Layer Setup
	4.6.1.5. TopK Layer Setup
	4.6.1.6. Marking The Network Outputs

	4.6.2. RNNv2 Workflow - From TensorFlow To TensorRT
	4.6.2.1. Training A CharRNN Model With TensorFlow
	4.6.2.2. Exporting Weights From A TensorFlow Model Checkpoint
	4.6.2.3. Loading And Converting Weights Format
	4.6.2.4. RNNv2: Setting Weights And Bias

	4.6.3. Seeding The Network
	4.6.4. Generating Data

	4.7. sampleINT8
	4.7.1. Defining The Network
	4.7.2. Building The Engine
	4.7.2.1. Calibrating The Network
	4.7.2.2. Calibration Set

	4.7.3. Configuring The Builder
	4.7.4. Running The Engine
	4.7.5. Verifying The Output
	4.7.6. Batch Files For Calibration
	4.7.6.1. Generating Batch Files For Caffe Users
	4.7.6.2. Generating Batch Files For Non-Caffe Users

	4.8. samplePlugin
	4.8.1. Defining The Network
	4.8.2. Enabling Custom Layers In NvCaffeParser
	4.8.3. Building The Engine
	4.8.4. Serializing And Deserializing
	4.8.5. Resource Management And Execution

	4.9. sampleNMT
	4.9.1. Overview
	4.9.2. Preparing The Data
	4.9.3. Running The Sample
	4.9.4. Training The Model
	4.9.5. Importing Weights From A Checkpoint

	4.10. sampleFasterRCNN
	4.10.1. Overview
	4.10.2. Preprocessing The Input
	4.10.3. Defining The Network
	4.10.4. Building The Engine
	4.10.5. Running The Engine
	4.10.6. Verifying The Output

	4.11. sampleUffSSD
	4.11.1. API Overview
	4.11.2. Processing The Input Graph
	4.11.3. Preparing The Data
	4.11.4. Defining The Network And Plugins
	4.11.5. Verifying The Output

	4.12. sampleMovieLens
	4.12.1. Importing Network To TensorRT
	4.12.2. Running With MPS
	4.12.3. Verifying The Output

	4.13. lite_examples
	4.14. pytorch_to_trt
	4.15. resnet_as_a_service
	4.16. sample_onnx
	4.17. tf_to_trt

	Troubleshooting
	5.1. FAQs
	5.2. Support

	Appendix
	A.1. TensorRT Layers
	A.2. Command Line Wrapper
	A.3. ACKNOWLEDGEMENTS

